You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, 3...N-1. Each edge has an integer value assigned to it, representing its length.

We will ask you to perfrom some instructions of the following form:

  • DIST a b : ask for the distance between node a and node b
    or
  • KTH a b k : ask for the k-th node on the path from node a to node b

Example:
N = 6 
1 2 1 // edge connects node 1 and node 2 has cost 1 
2 4 1 
2 5 2 
1 3 1 
3 6 2

Path from node 4 to node 6 is 4 -> 2 -> 1 -> 3 -> 6 
DIST 4 6 : answer is 5 (1 + 1 + 1 + 2 = 5) 
KTH 4 6 4 : answer is 3 (the 4-th node on the path from node 4 to node 6 is 3)

Input

The first line of input contains an integer t, the number of test cases (t <= 25). ttest cases follow.

For each test case:

  • In the first line there is an integer N (N <= 10000)
  • In the next N-1 lines, the i-th line describes the i-th edge: a line with three integers a b c denotes an edge between ab of cost c (c <= 100000)
  • The next lines contain instructions "DIST a b" or "KTH a b k"
  • The end of each test case is signified by the string "DONE".

There is one blank line between successive tests.

Output

For each "DIST" or "KTH" operation, write one integer representing its result.

Print one blank line after each test.

Example

Input:
1 6
1 2 1
2 4 1
2 5 2
1 3 1
3 6 2
DIST 4 6
KTH 4 6 4
DONE Output:
5
3 思路:
倍增裸题。。。套板子,
求第k个的时候需要处理下,其他没什么。,。
实现代码:
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int M = 2e5+;
int dist[M],p[M][],dep[M],head[M];
int cnt1,n; struct node{
int to,next,w;
}e[M]; void add(int u,int v,int w){
e[++cnt1].w=w;e[cnt1].to=v;e[cnt1].next=head[u];head[u]=cnt1;
e[++cnt1].w=w;e[cnt1].to=u;e[cnt1].next=head[v];head[v]=cnt1;
} void dfs(int u){
for(int i = head[u];i != -;i=e[i].next){
int v = e[i].to;
if(v == p[u][]) continue;
dep[v] = dep[u] + ;
dist[v] = dist[u] + e[i].w;
p[v][] = u; //p[i][0]存i的父节点
dfs(v);
}
} void init(){
for(int j = ;(<<j)<=n;j++){
for(int i = ;i <= n;i++){
p[i][j] = p[p[i][j-]][j-];
//cout<<i<<" "<<j<<" "<< p[i][j]<<endl;
}
}
} int lca(int a,int b){
if(dep[a] > dep[b]) swap(a,b);
int h = dep[b] - dep[a]; //h为高度差
for(int i = ;(<<i)<=h;i++){ //(1<<i)&f找到h化为2进制后1的位置,移动到相应的位置
if((<<i)&h) b = p[b][i];
//比如h = 5(101),先移动2^0祖先,然后再移动2^2祖先
}
//cout<<a<<" "<<b<<endl;
if(a!=b){
for(int i = ;i >= ;i --){
if(p[a][i]!=p[b][i]){ //从最大祖先开始,判断a,b祖先,是否相同
a = p[a][i]; b = p[b][i]; //如不相同,a,b,同时向上移动2^j
}
}
a = p[a][]; //这时a的father就是LCA
}
return a;
} int kth(int u,int k){
for(int i = ;i < ;i ++)
if(k >> i&)
u = p[u][i];
return u;
} int main()
{
int t,u,v,w,k;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
cnt1 = ;
//init();
memset(head,-,sizeof(head));
for(int i = ;i < n-;i ++){
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);
}
dfs();
init();
char s[];
while(scanf("%s",s)!=EOF){
if(s[]=='O') break;
scanf("%d%d",&u,&v);
int num = lca(u,v);
if(s[]=='I'){
printf("%d\n",dist[u]+dist[v]-*dist[num]);
}
if(s[]=='T'){
scanf("%d",&k);
int x = dep[u] - dep[num];
if(x + >= k)
printf("%d\n",kth(u,k-));
else printf("%d\n",kth(v,dep[v]+dep[u]-*dep[num]+-k));
}
}
}
return ;
}

SPOJ QTREE2 (LCA - 倍增 在线)的更多相关文章

  1. LCA(倍增在线算法) codevs 2370 小机房的树

    codevs 2370 小机房的树 时间限制: 1 s  空间限制: 256000 KB  题目等级 : 钻石 Diamond 题目描述 Description 小机房有棵焕狗种的树,树上有N个节点, ...

  2. SPOJ DISQUERY LCA + 倍增

    裸题,如此之水- Code: #include<cstdio> #include<algorithm> using namespace std; const int maxn ...

  3. POJ - 1330 Nearest Common Ancestors(dfs+ST在线算法|LCA倍增法)

    1.输入树中的节点数N,输入树中的N-1条边.最后输入2个点,输出它们的最近公共祖先. 2.裸的最近公共祖先. 3. dfs+ST在线算法: /* LCA(POJ 1330) 在线算法 DFS+ST ...

  4. 【LCA倍增】POJ1330-Nearest Common Ancestors

    [知识点:离线算法&在线算法] 一个离线算法,在开始时就需要知道问题的所有输入数据,而且在解决一个问题后就要立即输出结果. 一个在线算法是指它可以以序列化的方式一个个的处理输入,也就是说在开始 ...

  5. 【codevs2370】小机房的树 LCA 倍增

    2370 小机房的树  时间限制: 1 s  空间限制: 256000 KB  题目等级 : 钻石 Diamond 题目描述 Description 小机房有棵焕狗种的树,树上有N个节点,节点标号为0 ...

  6. LCA倍增算法

    LCA 算法是一个技巧性很强的算法. 十分感谢月老提供的模板. 这里我实现LCA是通过倍增,其实就是二进制优化. 任何一个数都可以有2的阶数实现 例如16可以由1 2 4 8组合得到 5可以由1 2 ...

  7. 洛谷 3379 最近公共祖先(LCA 倍增)

    洛谷 3379 最近公共祖先(LCA 倍增) 题意分析 裸的板子题,但是注意这题n上限50w,我用的边表,所以要开到100w才能过,一开始re了两发,发现这个问题了. 代码总览 #include &l ...

  8. CodeVs.2370 小机房的树 ( LCA 倍增 最近公共祖先)

    CodeVs.2370 小机房的树 ( LCA 倍增 最近公共祖先) 题意分析 小机房有棵焕狗种的树,树上有N个节点,节点标号为0到N-1,有两只虫子名叫飘狗和大吉狗,分居在两个不同的节点上.有一天, ...

  9. POJ.1986 Distance Queries ( LCA 倍增 )

    POJ.1986 Distance Queries ( LCA 倍增 ) 题意分析 给出一个N个点,M条边的信息(u,v,w),表示树上u-v有一条边,边权为w,接下来有k个询问,每个询问为(a,b) ...

随机推荐

  1. 蓝桥杯 历届试题 九宫重排 (bfs+康托展开去重优化)

    Description 如下面第一个图的九宫格中,放着 1~8 的数字卡片,还有一个格子空着.与空格子相邻的格子中的卡片可以移动到空格中.经过若干次移动,可以形成第二个图所示的局面. 我们把第一个图的 ...

  2. docker push images login -u harbor 问题记录 https 证书

    1.[root@dev-100 Desktop]# docker login -u clouder -p engine harbor.xiaowei.com 2.docker tag busybox: ...

  3. Voronoi图与Delaunay三角剖分

    详情请见[ZJOI2018]保镖 题解随笔 - 99 文章 - 0 评论 - 112

  4. MFC Edit控件的使用~~

    EditBox,一般用于显示数字文本,或者与用户沟通获取数字文本. 这里介绍一种将EditBox与一个变量关联起来的方法: 快捷键:Shift + Ctrl + X,进入类导向,选择成员变量属性页: ...

  5. koa2 入门(1)koa-generator 脚手架和 mongoose 使用

    项目地址:https://github.com/caochangkui/demo/tree/koa2-learn 1 构建项目 1.1 安装koa-generator $ npm install -g ...

  6. 通过实例来理解paxos算法

    背景   Paxos算法是莱斯利·兰伯特(Leslie Lamport,就是 LaTeX 中的”La”,此人现在在微软研究院)于1990年提出的一种基于消息传递的一致性算法.由于算法难以理解起初并没有 ...

  7. [Direct2D开发] 从资源加载位图

    转载请注明出处:http://www.cnblogs.com/Ray1024 一.概述 Direct2D使用Windows图像处理组件 (WIC) 来加载位图.从文件加载位图的方法很简单,而且网上的教 ...

  8. Asp.Net_Ajax调用WebService返回Json前台获取循环解析

    利用JQuery的$.ajax()可以很方便的调用 asp.net的后台方法.但往往从后台返回的json字符串不能够正确解析,究其原因,是因为没有对返回的json数据做进一步的加工.其实,这里只需 要 ...

  9. Linux/centos 7 使用动态ip(dhcp)切换成静态ip后无法联网的问题

    确保:子网掩码,网关,dns一致,最后修改: /etc/sysconfig/network-scripts/ifcfg-ens33 查看网关和子网掩码: route -n 查看dns

  10. 虚拟机virtualBox安装linux系统 xshell远程连接linux

    虚拟机virtualBox安装linux系统 xshell远程连接linux 虚拟机概念: 通过软件, 使用虚拟化技术虚拟出电脑的硬件环境, 充当真实的电脑使用. 常见的虚拟软件: virtualBo ...