Caocao's Bridges

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 194    Accepted Submission(s): 89

Problem Description
Caocao was defeated by Zhuge Liang and Zhou Yu in the battle of Chibi. But he wouldn't give up. Caocao's army still was not good at water battles, so he came up with another idea. He built many islands in the Changjiang river, and based on those islands, Caocao's army could easily attack Zhou Yu's troop. Caocao also built bridges connecting islands. If all islands were connected by bridges, Caocao's army could be deployed very conveniently among those islands. Zhou Yu couldn't stand with that, so he wanted to destroy some Caocao's bridges so one or more islands would be seperated from other islands. But Zhou Yu had only one bomb which was left by Zhuge Liang, so he could only destroy one bridge. Zhou Yu must send someone carrying the bomb to destroy the bridge. There might be guards on bridges. The soldier number of the bombing team couldn't be less than the guard number of a bridge, or the mission would fail. Please figure out as least how many soldiers Zhou Yu have to sent to complete the island seperating mission.
 
Input
There are no more than 12 test cases.

In each test case:

The first line contains two integers, N and M, meaning that there are N islands and M bridges. All the islands are numbered from 1 to N. ( 2 <= N <= 1000, 0 < M <= N2 )

Next M lines describes M bridges. Each line contains three integers U,V and W, meaning that there is a bridge connecting island U and island V, and there are W guards on that bridge. ( U ≠ V and 0 <= W <= 10,000 )

The input ends with N = 0 and M = 0.

 
Output
For each test case, print the minimum soldier number Zhou Yu had to send to complete the mission. If Zhou Yu couldn't succeed any way, print -1 instead.
 
Sample Input
3 3
1 2 7
2 3 4
3 1 4
3 2
1 2 7
2 3 4
0 0
 
Sample Output
-1
4
 
Source
 
Recommend
liuyiding
 

这题的意思就是求出所有的桥,然后输出桥的权值的最小值。

但是坑点比较多。

如果一开始是不连通的,输出0.

图有重边,需要处理。

还有如果取到的最小值是0的话,要输出1,表示要派一个人过去。

 /* ***********************************************
Author :kuangbin
Created Time :2013/9/15 星期日 12:11:49
File Name :2013杭州网络赛\1001.cpp
************************************************ */ #pragma comment(linker, "/STACK:1024000000,1024000000")
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
const int INF = 0x3f3f3f3f;
/*
* 求 无向图的割点和桥
* 可以找出割点和桥,求删掉每个点后增加的连通块。
* 需要注意重边的处理,可以先用矩阵存,再转邻接表,或者进行判重
*/
const int MAXN = ;
const int MAXM = ;
struct Edge
{
int to,next;
int w;
bool cut;//是否为桥的标记
}edge[MAXM];
int head[MAXN],tot;
int Low[MAXN],DFN[MAXN],Stack[MAXN];
int Index,top;
bool Instack[MAXN];
bool cut[MAXN];
int add_block[MAXN];//删除一个点后增加的连通块
int bridge; void addedge(int u,int v,int w)
{
edge[tot].to = v;edge[tot].next = head[u];edge[tot].cut = false;
edge[tot].w = w;
head[u] = tot++;
} void Tarjan(int u,int pre)
{
int v;
Low[u] = DFN[u] = ++Index;
Stack[top++] = u;
Instack[u] = true;
int son = ;
int pre_num = ;
for(int i = head[u];i != -;i = edge[i].next)
{
v = edge[i].to;
if(v == pre && pre_num == )
{
pre_num++;
continue; }
if( !DFN[v] )
{
son++;
Tarjan(v,u);
if(Low[u] > Low[v])Low[u] = Low[v];
//桥
//一条无向边(u,v)是桥,当且仅当(u,v)为树枝边,且满足DFS(u)<Low(v)。
if(Low[v] > DFN[u])
{
bridge++;
edge[i].cut = true;
edge[i^].cut = true;
}
//割点
//一个顶点u是割点,当且仅当满足(1)或(2) (1) u为树根,且u有多于一个子树。
//(2) u不为树根,且满足存在(u,v)为树枝边(或称父子边,
//即u为v在搜索树中的父亲),使得DFS(u)<=Low(v)
if(u != pre && Low[v] >= DFN[u])//不是树根
{
cut[u] = true;
add_block[u]++;
}
}
else if( Low[u] > DFN[v])
Low[u] = DFN[v];
}
//树根,分支数大于1
if(u == pre && son > )cut[u] = true;
if(u == pre)add_block[u] = son - ;
Instack[u] = false;
top--;
}
int solve(int N)
{
memset(DFN,,sizeof(DFN));
memset(Instack,false,sizeof(Instack));
memset(add_block,,sizeof(add_block));
memset(cut,false,sizeof(cut));
Index = top = ;
bridge = ;
for(int i = ;i <= N;i++)
if( !DFN[i] )
Tarjan(i,i);
int ret = INF;
for(int u = ; u <= N;u++)
for(int i = head[u]; i != -;i = edge[i].next)
if(edge[i].cut)
ret = min(ret,edge[i].w);
if(ret == INF)ret = -;
if(ret == )ret++;
return ret;
}
int F[MAXN];
int find(int x)
{
if(F[x] == -)return x;
else return F[x] = find(F[x]);
}
void init()
{
memset(F,-,sizeof(F));
tot = ;
memset(head,-,sizeof(head));
}
void bing(int u,int v)
{
int t1 = find(u);
int t2 = find(v);
if(t1 != t2)F[t1] = t2;
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n,m;
while(scanf("%d%d",&n,&m) == )
{
if(n == && m == )break;
int u,v,w;
init();
while(m--)
{
scanf("%d%d%d",&u,&v,&w);
if(u == v)continue;
addedge(u,v,w);
addedge(v,u,w);
bing(u,v);
}
bool flag = true;
for(int i = ; i <= n;i++)
if(find(i) != find())
flag = false;
if(!flag)
{
printf("0\n");
continue;
}
printf("%d\n",solve(n));
}
return ;
}

HDU 4738 Caocao's Bridges (2013杭州网络赛1001题,连通图,求桥)的更多相关文章

  1. hdu 4738 Caocao's Bridges(2013杭州网络赛丶神坑)

    就是求最小权值的桥..不过有好几个坑... 1:原图不连通,ans=0. 2: m<=n^2 显然有重边,重边必然不是桥,处理重边直接add(u, v, INF). 3:   最小桥边权为0的时 ...

  2. HDU 4741 Save Labman No.004 (2013杭州网络赛1004题,求三维空间异面直线的距离及最近点)

    Save Labman No.004 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  3. HDU 4759 Poker Shuffle(2013长春网络赛1001题)

    Poker Shuffle Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  4. HDU 4745 Two Rabbits (2013杭州网络赛1008,最长回文子串)

    Two Rabbits Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Tota ...

  5. HDU 4747 Mex (2013杭州网络赛1010题,线段树)

    Mex Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submis ...

  6. HDU 4739 Zhuge Liang's Mines (2013杭州网络赛1002题)

    Zhuge Liang's Mines Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  7. HDU 4751 Divide Groups (2013南京网络赛1004题,判断二分图)

    Divide Groups Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  8. 2013杭州网络赛D题HDU 4741(计算几何 解三元一次方程组)

    Save Labman No.004 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  9. 2013杭州网络赛C题HDU 4640(模拟)

    The Donkey of Gui Zhou Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

随机推荐

  1. JavaScript编写风格指南 (二)

    七:注释 // 频繁的使用注释有助于他人理解你的代码// 1.代码晦涩难懂// 2.可能被误认为是错误的代码// 3.必要但不明显的针对特定浏览器的代码// 4.对于对象,方法或者属性,生成文档是有必 ...

  2. [python]python错误集锦

    ValueError: invalid literal : ''不能将非数字字符串转换为整型 object has no attribute 对象调用一个没有的方法(内建或自定义) TypeError ...

  3. js和jquery使按钮失效为不可用状态的方法

    设置disabled属性为true即为不可用状态. html代码: <input type="button" value="提交" id="bt ...

  4. LCA 算法(二)倍增

     介绍一种解决最近公共祖先的在线算法,倍增,它是建立在任意整数的二进制拆分之上.   代码:   //LCA:Doubly #include<cstdio> #define swap(a, ...

  5. objective-c 几何类常用方法整理

    CGGeometry参考定义几何结构和功能,操作简单.数据结构中的一个点CGPoint代表在一个二维坐标系统.数据结构的位置和尺寸CGRect代表的一个长方形.数据结构的尺寸CGSize代表宽度和高度 ...

  6. Dream_Spark-----Spark 定制版:003~Spark Streaming(三)

    Spark 定制版:003~Spark Streaming(三) 本讲内容: a. Spark Streaming Job 架构和运行机制 b. Spark Streaming Job 容错架构和运行 ...

  7. 【密码学】RSA算法过程-求解密钥

    1.密钥的计算获取过程 密钥的计算过程为:首先选择两个质数p和q,令n=p*q. 令k=ϕ(n)=(p−1)(q−1),原理见2的分析 选择任意整数d,保证其与k互质 取整数e,使得[de]k=[1] ...

  8. 001_nginx常用参数查询

    一.underscores_in_headers on; Nginx 默认把名称包含下划线的 Headers 视为无效,直接移除.如果你希望让这类型的信息生效,那你要把 underscores_in_ ...

  9. CentOS7上安装与配置Tomcat8与MySQL5.7

    一.安装tomcat Tomcat 的安装依赖 JDK,在安装 Tomcat 之前需要先安装 Java JDK.输入命令 java -version,如果显示 JDK 版本,证明已经安装了 JDK.

  10. private,protected,public和default的区别

    private,protected,public和default的区别 private,protected,public和default作为Java中的访问修饰符,他们的最大区别就在于访问权限不同: ...