Caocao's Bridges

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 194    Accepted Submission(s): 89

Problem Description
Caocao was defeated by Zhuge Liang and Zhou Yu in the battle of Chibi. But he wouldn't give up. Caocao's army still was not good at water battles, so he came up with another idea. He built many islands in the Changjiang river, and based on those islands, Caocao's army could easily attack Zhou Yu's troop. Caocao also built bridges connecting islands. If all islands were connected by bridges, Caocao's army could be deployed very conveniently among those islands. Zhou Yu couldn't stand with that, so he wanted to destroy some Caocao's bridges so one or more islands would be seperated from other islands. But Zhou Yu had only one bomb which was left by Zhuge Liang, so he could only destroy one bridge. Zhou Yu must send someone carrying the bomb to destroy the bridge. There might be guards on bridges. The soldier number of the bombing team couldn't be less than the guard number of a bridge, or the mission would fail. Please figure out as least how many soldiers Zhou Yu have to sent to complete the island seperating mission.
 
Input
There are no more than 12 test cases.

In each test case:

The first line contains two integers, N and M, meaning that there are N islands and M bridges. All the islands are numbered from 1 to N. ( 2 <= N <= 1000, 0 < M <= N2 )

Next M lines describes M bridges. Each line contains three integers U,V and W, meaning that there is a bridge connecting island U and island V, and there are W guards on that bridge. ( U ≠ V and 0 <= W <= 10,000 )

The input ends with N = 0 and M = 0.

 
Output
For each test case, print the minimum soldier number Zhou Yu had to send to complete the mission. If Zhou Yu couldn't succeed any way, print -1 instead.
 
Sample Input
3 3
1 2 7
2 3 4
3 1 4
3 2
1 2 7
2 3 4
0 0
 
Sample Output
-1
4
 
Source
 
Recommend
liuyiding
 

这题的意思就是求出所有的桥,然后输出桥的权值的最小值。

但是坑点比较多。

如果一开始是不连通的,输出0.

图有重边,需要处理。

还有如果取到的最小值是0的话,要输出1,表示要派一个人过去。

 /* ***********************************************
Author :kuangbin
Created Time :2013/9/15 星期日 12:11:49
File Name :2013杭州网络赛\1001.cpp
************************************************ */ #pragma comment(linker, "/STACK:1024000000,1024000000")
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
const int INF = 0x3f3f3f3f;
/*
* 求 无向图的割点和桥
* 可以找出割点和桥,求删掉每个点后增加的连通块。
* 需要注意重边的处理,可以先用矩阵存,再转邻接表,或者进行判重
*/
const int MAXN = ;
const int MAXM = ;
struct Edge
{
int to,next;
int w;
bool cut;//是否为桥的标记
}edge[MAXM];
int head[MAXN],tot;
int Low[MAXN],DFN[MAXN],Stack[MAXN];
int Index,top;
bool Instack[MAXN];
bool cut[MAXN];
int add_block[MAXN];//删除一个点后增加的连通块
int bridge; void addedge(int u,int v,int w)
{
edge[tot].to = v;edge[tot].next = head[u];edge[tot].cut = false;
edge[tot].w = w;
head[u] = tot++;
} void Tarjan(int u,int pre)
{
int v;
Low[u] = DFN[u] = ++Index;
Stack[top++] = u;
Instack[u] = true;
int son = ;
int pre_num = ;
for(int i = head[u];i != -;i = edge[i].next)
{
v = edge[i].to;
if(v == pre && pre_num == )
{
pre_num++;
continue; }
if( !DFN[v] )
{
son++;
Tarjan(v,u);
if(Low[u] > Low[v])Low[u] = Low[v];
//桥
//一条无向边(u,v)是桥,当且仅当(u,v)为树枝边,且满足DFS(u)<Low(v)。
if(Low[v] > DFN[u])
{
bridge++;
edge[i].cut = true;
edge[i^].cut = true;
}
//割点
//一个顶点u是割点,当且仅当满足(1)或(2) (1) u为树根,且u有多于一个子树。
//(2) u不为树根,且满足存在(u,v)为树枝边(或称父子边,
//即u为v在搜索树中的父亲),使得DFS(u)<=Low(v)
if(u != pre && Low[v] >= DFN[u])//不是树根
{
cut[u] = true;
add_block[u]++;
}
}
else if( Low[u] > DFN[v])
Low[u] = DFN[v];
}
//树根,分支数大于1
if(u == pre && son > )cut[u] = true;
if(u == pre)add_block[u] = son - ;
Instack[u] = false;
top--;
}
int solve(int N)
{
memset(DFN,,sizeof(DFN));
memset(Instack,false,sizeof(Instack));
memset(add_block,,sizeof(add_block));
memset(cut,false,sizeof(cut));
Index = top = ;
bridge = ;
for(int i = ;i <= N;i++)
if( !DFN[i] )
Tarjan(i,i);
int ret = INF;
for(int u = ; u <= N;u++)
for(int i = head[u]; i != -;i = edge[i].next)
if(edge[i].cut)
ret = min(ret,edge[i].w);
if(ret == INF)ret = -;
if(ret == )ret++;
return ret;
}
int F[MAXN];
int find(int x)
{
if(F[x] == -)return x;
else return F[x] = find(F[x]);
}
void init()
{
memset(F,-,sizeof(F));
tot = ;
memset(head,-,sizeof(head));
}
void bing(int u,int v)
{
int t1 = find(u);
int t2 = find(v);
if(t1 != t2)F[t1] = t2;
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n,m;
while(scanf("%d%d",&n,&m) == )
{
if(n == && m == )break;
int u,v,w;
init();
while(m--)
{
scanf("%d%d%d",&u,&v,&w);
if(u == v)continue;
addedge(u,v,w);
addedge(v,u,w);
bing(u,v);
}
bool flag = true;
for(int i = ; i <= n;i++)
if(find(i) != find())
flag = false;
if(!flag)
{
printf("0\n");
continue;
}
printf("%d\n",solve(n));
}
return ;
}

HDU 4738 Caocao's Bridges (2013杭州网络赛1001题,连通图,求桥)的更多相关文章

  1. hdu 4738 Caocao's Bridges(2013杭州网络赛丶神坑)

    就是求最小权值的桥..不过有好几个坑... 1:原图不连通,ans=0. 2: m<=n^2 显然有重边,重边必然不是桥,处理重边直接add(u, v, INF). 3:   最小桥边权为0的时 ...

  2. HDU 4741 Save Labman No.004 (2013杭州网络赛1004题,求三维空间异面直线的距离及最近点)

    Save Labman No.004 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  3. HDU 4759 Poker Shuffle(2013长春网络赛1001题)

    Poker Shuffle Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  4. HDU 4745 Two Rabbits (2013杭州网络赛1008,最长回文子串)

    Two Rabbits Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Tota ...

  5. HDU 4747 Mex (2013杭州网络赛1010题,线段树)

    Mex Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submis ...

  6. HDU 4739 Zhuge Liang's Mines (2013杭州网络赛1002题)

    Zhuge Liang's Mines Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  7. HDU 4751 Divide Groups (2013南京网络赛1004题,判断二分图)

    Divide Groups Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  8. 2013杭州网络赛D题HDU 4741(计算几何 解三元一次方程组)

    Save Labman No.004 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  9. 2013杭州网络赛C题HDU 4640(模拟)

    The Donkey of Gui Zhou Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

随机推荐

  1. 20145234黄斐《Java程序设计》第八周

    教材学习内容总结 第十四章-NIO与NIO2 NIO与IO的区别 NIO Channel继承框架 想要取得Channel的操作对象,可以使用Channels类,它定义了静态方法newChannel() ...

  2. shell 判断脚本参数

    测试登陆脚本 ./test.sh -p 123 -P 3306 -h 127.0.0.1 -u root #!/bin/sh ];then echo "USAGE: $0 -u user - ...

  3. Anaconda+django写出第一个web app(十)

    今天继续学习外键的使用. 当我们有了category.series和很多tutorials时,我们查看某个tutorial,可能需要这样的路径http://127.0.0.1:8000/categor ...

  4. Linux 串口、usb转串口驱动分析(2-2) 【转】

    转自:http://blog.chinaunix.net/xmlrpc.php?r=blog/article&uid=26807463&id=4186852 Linux 串口.usb转 ...

  5. struct termios结构体详解

    一.数据成员 termios 函数族提供了一个常规的终端接口,用于控制非同步通信端口. 这个结构包含了至少下列成员:tcflag_t c_iflag;      /* 输入模式 */tcflag_t ...

  6. innobackupex做MySQL增量备份及恢复【转】

    创建备份用户 mysql> grant process,reload,lock tables,replication client on *.* to 'backup'@'localhost' ...

  7. Laravel 的计划任务

    避免并发执行 $schedule->command('emails:send')->withoutOverlapping(); 这里需要注意,对于 call function 定义的计划任 ...

  8. sqlmap工作流程图

  9. 移动端经常出现的兼容问题,谈谈移动端应用或者wap站的一些优化技巧和心得

    移动端经常出现的兼容问题,谈谈移动端应用或者wap站的一些优化技巧和心得 1.        安卓浏览器看背景图片,有些设备会模糊. 因为手机分辨率太小,如果按照分辨率来显示网页,字会非常小,安卓手机 ...

  10. webpack4.x配置详情

    webpack打包工具现在非常流行,熟悉并且能够进行配置也变得非常重要.在学习和使用的过程中遇到过很多的问题,希望能够让自己记录下来,巩固自己的学习. 1.创建文件目录 先在自己的常用盘中(我自己的项 ...