1. 分别用Gauss消去法、列主元Gauss消去法、三角分解方法求解方程组

程序:

1Guess消去法:

function x=GaussXQByOrder(A,b)

%Gauss消去法

N = size(A);

n = N(1);

x = zeros(n,1);

for i=1:(n-1)

for j=(i+1):n

if(A(i,i)==0)

disp('对角元不能为0');

return;

end

m = A(j,i)/A(i,i);

A(j,i:n)=A(j,i:n)-m*A(i,i:n);

b(j)=b(j)-m*b(i);

end

end

x(n)=b(n)/A(n,n);

for i=n-1:-1:1

x(i)=(b(i)-sum(A(i,i+1:n)*x(i+1:n)))/A(i,i);

end

命令行输入:

A=[1 -1 2 1;-1 3 0 -3 ;2 0 9 -6;1 -3 -6 19];

b=[1 3 5 7];

b=b';

x=GaussXQByOrder(A,b)

运算结果:

x =

-8.000000000000000

0.333333333333333

3.666666666666667

2.000000000000000

(2)列主元Gauss消去法

程序:

function x=GaussXQLineMain(A,b)

%列主元Gauss消去法

N = size(A);

n = N(1);

x = zeros(n,1);

zz=zeros(1,n);

for i=1:(n-1)

[~,p]=max(abs(A(i:n,i)));

zz=A(i,:);

A(i,:)=A(p+i-1,:);

A(p+i-1,:)=zz;

temp=b(i);

b(i)=b(i+p-1);

b(i+p-1)=temp;

for j=(i+1):n

m = A(j,i)/A(i,i);

A(j,i:n)=A(j,i:n)-m*A(i,i:n);

b(j)=b(j)-m*b(i);

end

end

x(n)=b(n)/A(n,n);

for i=n-1:-1:1

x(i)=(b(i)-sum(A(i,i+1:n)*x(i+1:n)))/A(i,i);

end

命令行:

A=[1 -1 2 1;-1 3 0 -3 ;2 0 9 -6;1 -3 -6 19];

b=[1 3 5 7];

b=b';

x=GaussXQLineMain(A,b)

运行结果:

x =

-8.000000000000005

0.333333333333332

3.666666666666668

2.000000000000000

(3)三角分解方法

程序:

function x = LU(A,b)

%三角分解

N = size(A);

n = N(1);

L = eye(n,n);

U = zeros(n,n);

x = zeros(n,1);

y = zeros(n,1);

U(1,1:n) = A(1,1:n);

L(1:n,1) = A(1:n,1)/U(1,1);

for k=2:n

for i=k:n

U(k,i) = A(k,i)-L(k,1:(k-1))*U(1:(k-1),i);

end

for j=(k+1):n

L(j,k) = (A(j,k)-L(j,1:(k-1))*U(1:(k-1),k))/U(k,k);

end

end

y(1)=b(1)/L(1,1);

for i=2:n

y(i)=b(i)-sum(L(i,1:i-1)*y(1:i-1));

end

x(n)=y(n)/U(n,n);

for i=n-1:-1:1

x(i)=(y(i)-sum(U(i,i+1:n)*x(i+1:n)))/U(i,i);

end

命令行:

A=[1 -1 2 1;-1 3 0 -3 ;2 0 9 -6;1 -3 -6 19];

b=[1 3 5 7];

b=b';

x=LU(A,b)

运行结果:

x =

-8.000000000000000

0.333333333333333

3.666666666666667

2.000000000000000

程序:function [times,wucha]=zhuiganfa(a,b,c,f)

%追赶法:x为所求解,times为所有乘除运算次数(即时间),wucha为误差的2-范数。

n=length(f);

x=zeros(n,1);

y=zeros(n,1);

times=0;

alpha=zeros(1,n);

p=zeros(1,n-1);

alpha(1)=b(1);

for i=2:n

p(i-1)=c(i-1)/alpha(i-1);

alpha(i)=b(i)-a(i-1)*p(i-1);

times=times+1;

end

y(1)=f(1)/b(1);

for i=2:n

y(i)=(f(i)-a(i-1)*y(i-1))/alpha(i);

times=times+1;

end

x(n)=y(n);

for i=n-1:-1:1

x(i)=y(i)-p(i)*x(i+1);

times=times+1;

end

A=zeros(n,n);

A=diag(b,0)+diag(a,-1)+diag(c,1);

wucha=norm((A*x-f'),2);

命令行(n=20):

a=repmat(11,1,19);

b=repmat(-19,1,20);

c=repmat(7,1,19);

f1=repmat(1.1,1,18);

f=[0 f1 1];

[times,wucha]=zhuiganfa(a,b,c,f)

运行结果:

times =

57

wucha =

8.009010697694412e-15

n=50

命令行:

a=repmat(11,1,49);

b=repmat(-19,1,50);

c=repmat(7,1,49);

f1=repmat(1.1,1,48);

f=[0 f1 1];

[times,wucha]=zhuiganfa(a,b,c,f)

运行结果:

times =

147

wucha =

1.292635294609912e-14

命令行(n=100)

a=repmat(11,1,99);

b=repmat(-19,1,100);

c=repmat(7,1,99);

f1=repmat(1.1,1,98);

f=[0 f1 1];

[times,wucha]=zhuiganfa(a,b,c,f)

结果:

times =

297

wucha =

2.599344850768740e-14

程序:function [count,wucha] = zhouqisanduijaiozhuiganfa(a,b,c,f)

%x为所求解,count为所有乘除运算次数

n=length(f);

x=zeros(n,1);

y=zeros(n,1);

count=0;

l=zeros(1,n-2);

s=zeros(1,n-1);

u=zeros(1,n);

t=zeros(1,n-1);

u(1)=b(1);t(1)=1;

s(1)=1/u(1);y(1)=f(1);

for i=2:n-1

l(i-1)=a(i-1)/u(i-1);

u(i)=b(i)-l(i-1)*c(i-1);

t(i)=-l(i-1)*t(i-1);

s(i)=-s(i-1)*c(i-1)/u(i);

y(i)=f(i)-l(i-1)*y(i-1);

count=count+4;

end

st=0;

for k=1:n-1

st=st+s(k)*t(k);

count=count+1;

end

sy=0;

for k=1:n-2

sy=sy+s(k)*y(k);

count=count+1;

end

u(n)=b(n)-st-s(n-1)*(c(n-1)+t(n-1));

y(n)=f(n)-sy;

x(n)=y(n)/u(n);

for i=n-1:-1:1

x(i)=(y(i)-c(i)*x(i+1)-t(i)*x(n))/u(i);

count=count+1;

end

A=zeros(n,n);

A=diag(b,0)+diag(a,-1)+diag(c,1);

A(n,1)=1;

A(1,n)=1;

wucha=norm((A*x-f'),2);

命令行:

n=10;

a=repmat(11,1,n-1);b=repmat(-19,1,n);

c=repmat(7,1,n-1);f1=repmat(1.1,1,n-2);f=[0 f1 1];

[count,wucha]= zhouqisanduijaiozhuiganfa(a,b,c,f)

运行结果:

count =

58

wucha =

4.525439045433075

n=30

count =

198

wucha =

5.951269557941316

n=100

count =

688

wucha =

5.993271932634396

高斯消去、追赶法 matlab的更多相关文章

  1. 高斯混合模型(GMM)及MATLAB代码

    之前在学习中遇到高斯混合模型,卡了很长一段时间,在这里记下学习中的一些问题以及解决的方法.希望看到这篇文章的同学们对高斯混合模型能有一些基本的概念.全文不废话,直接上重点. 本文将从以下三个问题详解高 ...

  2. matlab 求解线性方程组之LU分解

    线性代数中的一个核心思想就是矩阵分解,既将一个复杂的矩阵分解为更简单的矩阵的乘积.常见的有如下分解: LU分解:A=LU,A是m×n矩阵,L是m×m下三角矩阵,U是m×n阶梯形矩阵 QR分解: 秩分解 ...

  3. [zz] 混合高斯模型 Gaussian Mixture Model

    聚类(1)——混合高斯模型 Gaussian Mixture Model http://blog.csdn.net/jwh_bupt/article/details/7663885 聚类系列: 聚类( ...

  4. matlab中fft快速傅里叶变换

    视频来源:https://www.bilibili.com/video/av51932171?t=628. 博文来源:https://ww2.mathworks.cn/help/matlab/ref/ ...

  5. 【原创】开源Math.NET基础数学类库使用(16)C#计算矩阵秩

                   本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新  开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 上个月 ...

  6. C++线性方程求解

    介绍 程序SolveLinearEquations解决联立方程.该方案需要一个文本文件,其中包含输入和输出方程解决.这个项目是几年前我写在C#中http://www.codeproject.com/A ...

  7. Libsvm学习

        本篇博客转自 http://www.cppblog.com/guijie/archive/2013/09/05/169034.html     在电脑文件夹E:\other\matlab 20 ...

  8. 开源Math.NET基础数学类库使用(16)C#计算矩阵秩

    原文:[原创]开源Math.NET基础数学类库使用(16)C#计算矩阵秩                本博客所有文章分类的总目录:http://www.cnblogs.com/asxinyu/p/4 ...

  9. minimize.m:共轭梯度法更新BP算法权值

    minimize.m:共轭梯度法更新BP算法权值 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ Carl Edward Rasmussen在高斯机器学 ...

随机推荐

  1. JVM学习记录-类加载器

    前言 JVM设计团队把类加载阶段中的“通过一个类的全限定名来获取描述此类的二进制字节流”这个动作放到Java虚拟机外面去实现,以便让应用程序自己决定如何去获取所需要的类.实现这个动作的代码模块称为“类 ...

  2. 对Java虚拟机理解

    深入理解Java虚拟机 Java技术体系 Java体系分为四个平台 Java card 运行在小内存上的 Java ME 运行在手机上 Java SE 完整Java 核心api JavaEE 支持使用 ...

  3. POJ 2785 4 Values whose Sum is 0(暴力枚举的优化策略)

    题目链接: https://cn.vjudge.net/problem/POJ-2785 The SUM problem can be formulated as follows: given fou ...

  4. zoj 1760 Doubles(set集合容器的应用)

    题目链接: http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1760 题目描述: As part of an arithmet ...

  5. C#Redis 常用key操作

    一.前戏 在该系列的前几篇博客中,主要讲述的是与Redis数据类型相关的命令,如String.List.Set.Hashes和Sorted-Set.这些命令都具有一个共同点,即所有的操作都是针对与Ke ...

  6. 【Java并发编程】2、无锁编程:lock-free原理;CAS;ABA问题

    转自:http://blog.csdn.net/kangroger/article/details/47867269 定义 无锁编程是指在不使用锁的情况下,在多线程环境下实现多变量的同步.即在没有线程 ...

  7. [小技巧]Filezilla无法确定拖放操作目标,由于shell未正确安装__解决办法

    重装系统及相关软件之后,用filezilla拖拽ftp上的文件到桌面的时候,提示"无法确定拖放操作目标......" 解决办法很简单,执行如下几步就OK了 ①在CMD中,进入Fil ...

  8. 教你用Cordova打包Vue项目

    现在国内越来越多的开发者使用Vue开发混合app,但是当大家开发完成过后才发现不知道该怎么将Vue项目打包成app. 据我现在的了解打包Vue项目目前流行的就是使用weex和cordova.weex是 ...

  9. 第二十九天- socketserver模块 ftp上传

    1.socketserver模块: socketserver,它提供了服务器中心类,可简化网络服务器的开发,内部使用IO多路复用以及“多线程”和“多进程”,从而实现并发处理多个客户端请求的socket ...

  10. Object.assign简单总结

    定义 Object.assign方法用来将源对象source的所有可枚举属性复制到目标对象target.至少需要两个对象作为参数,第一个参数为源对象,后面的均为目标对象.(以下用source代指源对象 ...