一、mysql架构

mysql是一个单进程多线程架构的数据库。

二、存储引擎

InnoDB:

  • 支持事务
  • 行锁
  • 读操作无锁
  • 4种隔离级别,默认为repeatable
  • 自适应hash索引
  • 每张表的存储都是按主键的顺序记性存放
  • 支持全文索引(InnoDB1.2.x - mysql5.6)
  • 支持MVCC(多版本并发控制)实现高并发

MyISAM:

  • 不支持事务
  • 表锁
  • 支持全文索引

三、InnoDB体系架构

1、后台线程

  • Master Thread

    • 负责将缓冲池中的数据异步刷新到磁盘,保证数据的一致性
  • IO Thread
    • 负责IO请求的回调处理  
  • Purge Thread
    • 回收已经使用并分配的undo页(事务提交后,其所使用的undolog不再需要)

2、内存池

  • 缓冲池(一块内存区域)

    • InnoDB基于磁盘存储,将记录按照的方式进行管理(由于基于磁盘,速度较慢,所以需要引入缓冲池提高性能)
    • 读取页:先从缓冲池获取,缓冲池没有,才会从磁盘获取
    • 修改页:先写重做日志缓冲,再修改缓冲池中的页,然后以一定的频率刷新到磁盘(Checkpoint机制),在还没有刷新到磁盘之前,该页被称为脏页
    • innodb_buffer_pool_size设置大小
    • 存放对象:索引页、数据页、自适应hash索引和lock信息
    • 缓冲池可以配置多个(innodb_buffer_pool_instances),每个页根据hash值平均分配到不同的缓冲池实例中,用于减少数据库内部资源竞争
  • LRU List
    • 将最新的页放在队列前端,最近最少使用的放在尾端,当缓冲池不够用时,将尾端的页删除出缓冲池(如果此页是脏页,会先刷新到磁盘)。innodb采用的是midpoint技术进行LRU,具体参看《MySQL技术内幕 InnoDB存储引擎》
  • Flush List
    • 脏页列表
  • 重做日志redolog缓冲
    • 为了防止脏页在刷新到磁盘时宕机,必须先redolog,再修改页;
    • 数据库发生宕机时,通过redolog完成数据的恢复(ACID-D持久性)
    • 默认大小8M,通过innodb_log_buffer_size
    • 将redolog缓冲刷新到redolog文件中的时机
      • master会将redolog缓冲每隔1s刷新到redolog文件中
      • 每个事物提交
      • redolog缓冲池剩余空间小于1/2
  • Checkpoint
    • 缓冲池不够用时,将脏页刷新到磁盘
    • 数据库宕机时,只需要重做Checkpoint之后的日志,缩短数据库的恢复时间
    • redolog不可用时,将脏页刷新到磁盘

四、InnoDB逻辑存储结构

1、表空间

  • 默认情况下,只有一个表空间ibdata1,所有数据存放在这个空间内
  • 如果启用了innodb_file_per_table,则每张表内的数据可以单独放到一个表空间内
    • 每个表空间只存放数据、索引和InsertBuffer Bitmap页,其他数据还在ibdata1中

2、Segment段(InnoDB引擎自己控制)

  • 数据段:B+ tree的叶子节点
  • 索引段:B+ tree的非叶子节点
  • 回滚段

3、Extent区

  • 每个区的大小为1M,页大小为16KB,即一个区一共有64个连续的页(区的大小不可调节,页可以)

4、Page页

  • InnoDB磁盘管理的最小单位
  • 默认每个页大小为16KB,可以通过innodb_page_size来设置(4/8/16K)
  • 每个页最多存放7992行数据

5、Row行

五、索引

1、hash索引

  • 定位数据只需要一次查找,O(1)
  • 自适应hash索引:InnoDB会监控对表上各个索引页的查询,如果观察到建立hash索引可以带来速度提升,则建立hash索引(即InnoDB会自动的根据访问频率和模式来自动的为某些热点页建立hash索引)
  • 默认是开启的
  • 只可用于等值查询,不可用于范围查询

2、B+树索引

  • 树的高度一般为2~4层,需要2~4次查询(100w和1000w行数据,如果B+ tree都是3层,那么查询效率是一样的)
  • B+树索引能查到的是数据行所在的页
  • 包含聚集索引和辅助索引

3、聚集索引

  • 即主键索引
  • 叶子节点存放的是行记录数据所在的页,而页中的每一行都是完整的行(叶子节点也被称为数据页)
  • 针对范围查询也比较快

聚集索引图:

其中,根节点部分的Key:80000001代表主键为1;Pointer:0004代表指向数据页的页号(即第4页);

数据页节点的的PageOffset:0004代表第4页,其中存储的数据是完整的每一行。

4、辅助索引

  • 叶子节点存放的也是行记录数据所在的页,但还是页中存放的不是完整的行,而是仅仅是一对key-value和一个指针,该指针指向相应行数据的聚集索引的主键
  • 假设辅助索引树高3层,聚集索引树为3层,那么根据辅助索引查找数据,需要先经过3次IO找到主键,再经过3次IO找到行做在的数据页
  • 针对辅助索引的插入和更新操作:辅助索引页如果在缓冲池中,则插入;若不在,则点放到InsertBuffer对象中,之后在以一定的平率进行InsertBuffer和辅助索引页子节点的合并

辅助索引图:

其中,idx_c表示对第c列做了索引;idx_c中的Key:7fffffff代表c列的一个值,其实是-1;idx_c中的Pointer:80000001代表该行的主键是80000001,即1;下面的就是聚集索引部分。

5、联合索引(多列索引)

  • 左边匹配原则(如果索引为(a,b),则where a=x可以用到索引,但是b=x用不到,如果是覆盖索引有可能会用到)

6、覆盖索引

  • 从辅助索引中直接获取记录
  • 对于统计操作,例如count(1),有可能联合索引,右边也会匹配(优化器自己会做),因为count(1)操作不需要获取整行的详细数据,所以不需要去聚集索引的叶子节点去获取数据,直接在辅助索引树中就完成了操作
  • select username from xxx where username='lisi',如果username是辅助索引,那么整个查询在辅助索引树上就可以完成,因为辅助索引树上虽然没有保存完整的行,但是保存着<username,lisi>这个key-value对;如果select username, age from xxx where username='lisi',那么就要走聚集索引了

六、锁

1、latch

  • 保证并发线程操作临界资源的正确性
  • 自旋锁,自旋指定的次数后,若还没获取到锁,则进入等待状态,等待被唤醒

2、lock

  • 事务锁,锁定的可能是表、页或行
  • 释放点:事务commit或rollback
  • 两种标准的行级锁
    • 共享锁:S lock,事务T1获取了r行的S锁,事务T2也可以获取r行的S锁
    • 排他锁:X lock,事务T1获取了r行的S锁,事务T2就不能获取r行的X锁;事务T1获取了r行的X锁,事务T2就不能获取r行的X/S锁

七、事务

1、隔离级别

  • 读不提交
  • 读并且提交
    • 可避免脏读:一个事务读到另一个事务没有提交的数据,如果另一个事务发生回滚,第一个事务读到的数据就是垃圾数据
  • 可重复读
    • 会有幻读,InnoDB通过Next-Key Lock解决了

      • 幻读:指两次执行同一条 select 语句会出现不同的结果,第二次读会增加一数据行,并没有说这两次执行是在同一个事务中。使用表锁即可避免。
    • 可避免不可重复读:在同一个事务中两条一模一样的 select 语句的执行结果的比较。如果前后执行的结果一样,则是可重复读;如果前后的结果可以不一样,则是不可重复读。通常是发生了update。增加读取时的共享锁(禁止修改)即可避免。
    • 默认的事务隔离级别
  • 序列化

这里有美团的一篇文章,非常好:http://tech.meituan.com/mysql-index.html

补充:摘自:https://tech.meituan.com/mysql-index.html

一、B+树结构:

二、从B+树查找数据流程

三、B+树性质

《mysql技术内幕 InnoDB存储引擎(第二版)》阅读笔记的更多相关文章

  1. 阅读《RobHess的SIFT源码分析:综述》笔记

    今天总算是机缘巧合的找到了照样一篇纲要性质的文章. 如是能早一些找到就好了.不过“在你认为为时已晚的时候,其实还为时未晚”倒是也能聊以自慰,不过不能经常这样迷惑自己,毕竟我需要开始跑了! 就照着这个大 ...

  2. RobHess的SIFT源码分析:imgfeatures.h和imgfeatures.c文件

    SIFT源码分析系列文章的索引在这里:RobHess的SIFT源码分析:综述 imgfeatures.h中有SIFT特征点结构struct feature的定义,除此之外还有一些特征点的导入导出以及特 ...

  3. RobHess的SIFT源码分析:综述

    最初的目的是想做全景图像拼接,一开始找了OpenCV中自带的全景拼接的样例,用的是Stitcher类,可以很方便的实现全景拼接,而且效果很好,但是不利于做深入研究. 使用OpenCV中自带的Stitc ...

  4. 阅读《RobHess的SIFT源码分析:综述》笔记2

    今天开始磕代码部分. part1: 1. sift特征提取. img1_Feat = cvCloneImage(img1);//复制图1,深拷贝,用来画特征点 img2_Feat = cvCloneI ...

  5. element-ui button组件 radio组件源码分析整理笔记(一)

    Button组件 button.vue <template> <button class="el-button" @click="handleClick ...

  6. element-ui 组件源码分析整理笔记目录

    element-ui button组件 radio组件源码分析整理笔记(一) element-ui switch组件源码分析整理笔记(二) element-ui inputNumber.Card .B ...

  7. element-ui Carousel 走马灯源码分析整理笔记(十一)

    Carousel 走马灯源码分析整理笔记,这篇写的不详细,后面有空补充 main.vue <template> <!--走马灯的最外层包裹div--> <div clas ...

  8. STL源码分析读书笔记--第二章--空间配置器(allocator)

    声明:侯捷先生的STL源码剖析第二章个人感觉讲得蛮乱的,而且跟第三章有关,建议看完第三章再看第二章,网上有人上传了一篇读书笔记,觉得这个读书笔记的内容和编排还不错,我的这篇总结基本就延续了该读书笔记的 ...

  9. element-ui MessageBox组件源码分析整理笔记(十二)

    MessageBox组件源码,有添加部分注释 main.vue <template> <transition name="msgbox-fade"> < ...

  10. element-ui switch组件源码分析整理笔记(二)

    源码如下: <template> <div class="el-switch" :class="{ 'is-disabled': switchDisab ...

随机推荐

  1. Android Socket

    Android Socket 参考资料 菜鸟教程 怎么理解TCP的面向连接和UDP的无连接 https://www.cnblogs.com/xiaomayizoe/p/5258754.html htt ...

  2. 分类器评估方法:ROC曲线

    注:本文是人工智能研究网的学习笔记 ROC是什么 二元分类器(binary classifier)的分类结果 ROC空间 最好的预测模型在左上角,代表100%的灵敏度和0%的虚警率,被称为完美分类器. ...

  3. android 多线程的实现方式

    韩梦飞沙  韩亚飞  313134555@qq.com  yue31313  han_meng_fei_sha. 1,通过创建线程池,来创建多个线程. 2,通过异步任务,来创建线程池,从而创建多线程. ...

  4. 3143 二叉树的序遍历codevs

    题目描述 Description 求一棵二叉树的前序遍历,中序遍历和后序遍历 输入描述 Input Description 第一行一个整数n,表示这棵树的节点个数. 接下来n行每行2个整数L和R.第i ...

  5. Codeforces Round #374 (Div. 2) A. One-dimensional Japanese Crosswor 水题

    A. One-dimensional Japanese Crossword 题目连接: http://codeforces.com/contest/721/problem/A Description ...

  6. URAL 1962 In Chinese Restaurant 数学

    In Chinese Restaurant 题目连接: http://acm.hust.edu.cn/vjudge/contest/123332#problem/B Description When ...

  7. Android命令(更新……)

    1.通过命令行安装包 语法:adb install -r  apk包 例子:adb install -r D:\android\android-sdk-windows\platform-tools\L ...

  8. Vue 插件写法

    都说Vue2简单,上手容易,但小马过河,自己试了才晓得,除了ES6语法和webpack的配置让你感到陌生,重要的是思路的变换,以前随便拿全局变量和修改dom的锤子不能用了,变换到关注数据本身.vue的 ...

  9. Android framework回想(2) sp 和 wp sp对象

    用MediaPlayer说明sp的实现.sp是一个模板类,T是RefBase的子类.仅仅要继承于RefBase的类都能够使用sp. binder类也继承RefBase类,binder的实现离不开Ref ...

  10. iOS: 计算 UIWebView 的内容高度

    - (void)webViewDidFinishLoad:(UIWebView *)wb { //方法1 CGFloat documentWidth = [[wb stringByEvaluating ...