gcd以及exgcd入门讲解
gcd就是最大公约数,gcd(x, y)一般用(x, y)表示。与此相对的是lcm,最小公倍数,lcm(x, y)一般用[x, y]表示。
人人都知道:lcm(x, y) = x * y / gcd(x, y)
证明起来也不是很难:
(这真的是我自己写的,因为博客园不支持这格式……)
至于gcd的求法,想必各位在高中都学过辗转相除法和更相减损之术,这里只讲辗转相除法(更相减损之术略慢)
首先不妨设 x ≤ y,则gcd(x, y) =gcd(x, x +y) = gcd(x, y - x).所以gcd(x, y) = gcd(y % x, x),因此可以递归求解。
复杂度证明:因为y % x ≤ x && x ≤ y,所以y % x < y / 2。因此在最坏情况下为O(nlogn)。(用斐波那契数列的相邻两个数可以达到最坏复杂度)
那么接下来讲一下扩展gcd。
exgcd可以用来判断并求解形如ax +by = c 的方程,当且仅当gcd(a, b) | c时,存在整数解x, y。
也就是说,exgcd可以用来求解方程ax +by = gcd(a, b)
令a = b, b = a % b,则有方程b *x1 +(a % b) * y1 = gcd(b, a % b)
又因为gcd(a, b) = gcd(a % b),且a % b = a - b * ⌊a / b⌋
则b * x1 + (a - b * ⌊a / b⌋) * y1 =gcd(a, b)
整理得:a * y1 +b * (x1 - ⌊a / b⌋ *y1) = gcd(a, b)
所以原方程中:x = y1, y = x1 - ⌊a / b⌋ *y1。于是我们只要递归求出x1, y1就能求出x, y。
代码很短
void exgcd(ll a, ll b, ll& x, ll& y, ll& c)
{
if(!b) {y = ; x = ; c = a; return;}
exgcd(b, a % b, y, x); y -= a / b * x;
}
其中c = gcd(a, b)
值得注意的是,递归调用的时候y的位置上传了x,x位置上是y,也就是说,y里存的是x1,x里存的是y1,所以y -= a / b *y1,即y -= a / b * x。
我们现在已经求得了ax +by = gcd(a, b)的解,那么对于方程ax + by = c (gcd(a, b) | c)呢?
因为已经知道a *x1 +b * y1 = gcd(a, b)的解x1, y1,左右两边同乘以c / gcd(a, b) 得:
a * x1 * c / gcd(a, b) +b * y1 * c / gcd(a, b) = c
则原方程的一组解x2 = x1 * c / gcd(a, b), y2 = y1 * c / gcd(a, b)
由此得出解集{(x, y) | x = x2 + k * b / gcd(a, b), y = y2 - k * a / gcd(a, b), k ∈ z}
gcd以及exgcd入门讲解的更多相关文章
- Mysql C语言API编程入门讲解
原文:Mysql C语言API编程入门讲解 软件开发中我们经常要访问数据库,存取数据,之前已经有网友提出让鸡啄米讲讲数据库编程的知识,本文就详细讲解如何使用Mysql的C语言API进行数据库编程. ...
- #001 CSS快速入门讲解
CSS入门讲解 HTML人+CSS衣服+JS动作=>DHTML CSS: 层叠样式表 CSS2.0 和 CSS3.0 版本,目前学习CSS2, CSS3只是多了一些样式出来而已 CSS 干啥用的 ...
- HTML5游戏开发引擎Pixi.js新手入门讲解
在线演示 本地下载 这篇文章中,介绍HTML5游戏引擎pixi.js的基本使用. 相关代码如下: Javascript 导入类库:(使用极客的cdn服务:http://cdn.gbtags.com) ...
- AngularJS入门讲解4:多视图,事件绑定,$resource服务讲解
上一课,大家知道,手机详细模板我们没有写出来,使用的是一个占位模板. 这一课,我们先实现手机详细信息视图,这个视图会在用户点击手机列表中的一部手机时被显示出来. 为了实现手机详细信息视图,我们将会使用 ...
- 从BZOJ2242看数论基础算法:快速幂,gcd,exgcd,BSGS
LINK 其实就是三个板子 1.快速幂 快速幂,通过把指数转化成二进制位来优化幂运算,基础知识 2.gcd和exgcd gcd就是所谓的辗转相除法,在这里用取模的形式体现出来 \(gcd(a,b)\) ...
- poj2104 k-th number 主席树入门讲解
poj2104 k-th number 主席树入门讲解 定义:主席树是一种可持久化的线段树 又叫函数式线段树 刚开始学是不是觉得很蒙逼啊 其实我也是 主席树说简单了 就是 保留你每一步操作完成之后 ...
- gcd与exgcd
gcd 辗转相除法求gcd证明 \(gcd(a, b) == gcd(b, a\%b)\) 证明: 设: \(d\)为\(a\)与\(b\)的一个公约数, 则有\(d|b\) \(d|a\) 设: \ ...
- 数论入门2——gcd,lcm,exGCD,欧拉定理,乘法逆元,(ex)CRT,(ex)BSGS,(ex)Lucas,原根,Miller-Rabin,Pollard-Rho
数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p ...
- 【板子】gcd、exgcd、乘法逆元、快速幂、快速乘、筛素数、快速求逆元、组合数
1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(l ...
随机推荐
- 链接正常但IE浏览器无法显示网页的几种情况
一.感染病毒木马所致 这种情况往往表现在打开IE时,在IE界面的左下框里提示:正在打开网页,但一直无响应. 右击任务栏/任务管理器/进程,查看.如果CPU占用率100%,可以断定是感染了病毒,这时要查 ...
- 转载-asp.net id 和name的区别
name 是名字id是唯一标识name原来是为了标识之用,但是现在根据规范,都建议用id来标识元素.但是name在以下用途是不能替代的:1. 表单(form)的控件名,提交的数据都用控件的name而不 ...
- QYH练字
汉字书写笔划,提取自百度汉语等网站... 以下凑字数: [发文说明]博客园是面向开发者的知识分享社区,不允许发布任何推广.广告.政治方面的内容.博客园首页(即网站首页)只能发布原创的.高质量的.能让读 ...
- Shiro遇到的SecurityManager红色警告
问题如图 需要添加一个导入 import org.apache.shiro.mgt.SecurityManager; 这样就不会报错了
- Android - 内存泄漏 + 垃圾回收(GC)概念
Android内存泄露——全解析和处理办法 内存泄露 说到内存泄露,就不得不提到内存溢出,这两个比较容易混淆的概念,我们来分析一下. 内存泄露:程序在向系统申请分配内存空间后(new),在使用完毕后未 ...
- Outlook2013怎样自动答复电子邮件
工具/原料 office2013或outlook2013 百度经验:jingyan.baidu.com 方法/步骤 1 首先我们创建自己的答复邮件.打开outlook2013,单击“开始”>“新 ...
- AsnycLocal与ThreadLocal
AsnycLocal与ThreadLocal AsnyncLocal与ThreadLocal都是存储线程上下文的变量,但是,在实际使用过程中两者又有区别主要的表现在: AsyncLocal变量可以在父 ...
- FineReport中如何安装移动端H5插件
1. HTML5报表插件安装及使用编辑 插件安装 插件网址以及设计器插件安装方法和服务器安装插件的方法可以官网上面搜索,这里就不做详细介绍了. 移动端HTML5报表使用方法 安装好插件后,在浏览器中调 ...
- Mariadb MySQL、Mariadb中GROUP_CONCAT函数使用介绍
MySQL.Mariadb中GROUP_CONCAT 函数使用介绍 By:授客 QQ:1033553122 语法: GROUP_CONCAT([DISTINCT] column_name [ORDER ...
- Go语言包管理工具dep
什么是dep? dep和go,在一定程度上相当于maven之于Java,composer之于PHP,dep是go语言官方的一个包管理工具. 相比较go get而言,dep可以直接给引入的第三方包一个专 ...