我们考虑 \(\sum_{i=l}^r{f_i(x)}\) 是个什么东西。首先这个奇怪的东西很好离线做,所以尽管题目要求强制在线,我们还是离线下来试试。

我们发现,我们可以 \(x\) 坐标从 \(1\) 到 \(200000\) 扫过去,对于每个 \(f_i\),在 \(x_{i,1}+1\) 和 \(x_{i,2}+1\) 两个位置打标记进行更改。这样整个扫描过程就是 \(O(k+n)\) 的。然后考虑维护答案,我们发现,\(y=y_1\) 和 \(y=y_2\) 其实可以写成 \(y=0x+y_1,y=0x+y_2\) 的形式。那么,我们的 \(f_i(x)\) 就可以统一写成 \(ax+b\) 的形式。则 \(\sum_{i=l}^r{f_i(x)}=(\sum_{i=l}^r{a_i})x+\sum_{i=l}^r{b_i}\)。

这样,我们就只需要维护 \(a\) 和 \(b\) 的区间和。我们分别开两个线段树维护 \(a\) 和 \(b\) 的区间和。每次更改,就单点修改位置 \(i\) 上面的 \(a_i\) 和 \(b_i\)。然后我们提前把所有的询问挂在自己的 \(x_i\) 上,处理完当前 \(x\) 上的所有操作之后,对所有的 \([l,r]\) 询问进行查询得到 \(\sum_{i=l}^r{a_i}\) 和 \(\sum_{i=l}^r{b_i}\)。

但是现在强制在线,怎么做呢?

我们发现,只要我们存储下每个 \(x\) 所对应的 \(a\) 和 \(b\) 序列,就可以每次快速得到答案。但是存储 \(a\) 和 \(b\) 显然不现实,我们就考虑可持久化线段树。我们找到原先的所有操作:单点修改、区间查询,这恰好是可以使用主席树完成的工作。又因为是静态的,我们完全可以把主席树处理出来之后,带到询问里去计算。

还有一个小小的问题,询问时的 \(x\) 是可能达到 \(10^9\) 的,如何做呢?我们发现 \(2\cdot 10^5\) 之后的 \(x\) 都已经到了第三阶段,也就是 \(y=y_2\),可以直接处理其前缀和,然后 \(O(1)\) 计算答案。

注意我们同一个 \(x\) 上可能有很多的操作,也可能没有操作,不能把 \(x\) 作为主席树的时间轴,而应当对每个 \(x\) 上的所有操作执行完之后,记录当前主席树的最新版本。

如果我们记 \(k\) 为 更改 操作中出现的最大 \(x\),那么时间复杂度就是 \(O(k+(n+m)\log n)\),空间复杂度 \(O(n\log n)\)。

#define rd(i,n) for(ll i=0;i<n;i++)
#define rp(i,n) for(ll i=1;i<=n;i++)
#define rep(i,a,b) for(ll i=a;i<=b;i++)
typedef long long ll;
class pst{
private:
ll sum[10000005];
int ls[10000005],rs[10000005],cnt,Len;
int root[400005],Ti;
inline void Init(int &i,int l,int r,int* a){
i=++cnt;
if(l==r){
sum[i]=a[l];
return;
}
int mid=l+r>>1;
Init(ls[i],l,mid,a);
Init(rs[i],mid+1,r,a);
sum[i]=sum[ls[i]]+sum[rs[i]];
}
inline void Modify(int &i,int his,int x,int v,int l,int r){
i=++cnt;
if(l==r){
sum[i]=v;
return;
}
int mid=l+r>>1;
if(x<=mid){
rs[i]=rs[his];
Modify(ls[i],ls[his],x,v,l,mid);
}else{
ls[i]=ls[his];
Modify(rs[i],rs[his],x,v,mid+1,r);
}
sum[i]=sum[ls[i]]+sum[rs[i]];
}
inline ll Query(int i,int L,int R,int l,int r){
if(!i)return 0;
if(L<=l&&r<=R)return sum[i];
int mid=l+r>>1;
ll res=0;
if(ls[i]&&L<=mid)res+=Query(ls[i],L,R,l,mid);
if(rs[i]&&R>mid)res+=Query(rs[i],L,R,mid+1,r);
return res;
}
public:
inline void init(int len,int* a){
Len=len;
Init(root[0],1,len,a);
}
inline void modify(int x,int v){
int cnt=++Ti;
Modify(root[cnt],root[cnt-1],x,v,1,Len);
}
inline ll query(int ti,int l,int r){
return Query(root[ti],l,r,1,Len);
}
inline int curver(){
return Ti;
}
}ta,tb;
const int N=75005;
const int M=200000;
const int P=1000000000;
int n,m,q,l,r,x,xl[N],xr[N],yl[N],yr[N],a[N],b[N],Empty[N];
ll sum[N];
int vera[M+5],verb[M+5];
vt<int>v1[M+5],v2[M+5];
signed main(){
ios::sync_with_stdio(false);
cin.tie(0);
n=in();
rp(i,n)xl[i]=in(),xr[i]=in(),yl[i]=in(),a[i]=in(),b[i]=in(),yr[i]=in();
rp(i,n)v1[xl[i]+1].pb(i),v2[xr[i]+1].pb(i);
ta.init(n,Empty);tb.init(n,yl);
rep(ti,1,M){
for(auto j:v1[ti]){
ta.modify(j,a[j]);
tb.modify(j,b[j]);
}
for(auto j:v2[ti]){
ta.modify(j,0);
tb.modify(j,yr[j]);
}
vera[ti]=ta.curver();
verb[ti]=tb.curver();
}
rp(i,n)sum[i]=sum[i-1]+yr[i];
q=in();
ll ans=0;
rd(_,q){
l=in(),r=in(),x=in();
x=(x+ans)%P;
if(x<=M){
ans=ta.query(vera[x],l,r)*x+tb.query(verb[x],l,r);
}else{
ans=sum[r]-sum[l-1];
}
out(ans)('\n');
}
return 0;
}
//Crayan_r

CF837G - Functions On The Segments的更多相关文章

  1. CF数据结构练习(二)

    1. 833D Red-Black Cobweb 大意: 给定树, 边为黑色或白色, 求所有黑白边比例在$[\frac{1}{2},2]$内的路径边权乘积的乘积. 考虑点分治, 记黑边数为$a$, 白 ...

  2. R Customizing graphics

    Customizing graphics GraphicsLaTeXLattice (Treillis) plots In this chapter (it tends to be overly co ...

  3. (转) Functions

    Functions Functions allow to structure programs in segments of code to perform individual tasks. In ...

  4. IDA .edata .rdata .idata .text segments

    .rdata is for const data. It is the read only version of the .data segment. .idata holds the import ...

  5. [LeetCode] Number of Segments in a String 字符串中的分段数量

    Count the number of segments in a string, where a segment is defined to be a contiguous sequence of ...

  6. Greenplum记录(一):主体结构、master、segments节点、interconnect、performance monitor

    结构:Client--master host--interconnect--segment host 每个节点都是单独的PG数据库,要获得最佳的性能需要对每个节点进行独立优化. master上不包含任 ...

  7. Application package 'AndroidManifest.xml' must have a minimum of 2 segments.

    看了源码就是packagename里面必须包含一个. 源码在: ./sdk/eclipse/plugins/com.android.ide.eclipse.adt/src/com/android/id ...

  8. asp.net MVC helper 和自定义函数@functions小结

    asp.net Razor 视图具有.cshtml后缀,可以轻松的实现c#代码和html标签的切换,大大提升了我们的开发效率.但是Razor语法还是有一些棉花糖值得我们了解一下,可以更加强劲的提升我们 ...

  9. segments&cache

    Segments 执行效果 命令  在 sense 里边执行  GET /abcd/_segments  前边的是索引名称,后边是请求 段信息 说明  索引是面向分片的,是由于索引是由一个或多个分片( ...

  10. 【跟着子迟品 underscore】Array Functions 相关源码拾遗 & 小结

    Why underscore 最近开始看 underscore.js 源码,并将 underscore.js 源码解读 放在了我的 2016 计划中. 阅读一些著名框架类库的源码,就好像和一个个大师对 ...

随机推荐

  1. windows安装grunt时提示不是内部或外部命令解决方案

    参考:https://www.cnblogs.com/hts-technology/p/8477258.html 安装windows安装elasticsearch-head时 不需要输入grunt s ...

  2. 关于盒子动态高度与transition的问题

    今天遇到个小问题 大概要实现类似手风琴的效果 本来设计是定死的高度,直接 height:0; - > height:xxxpx;但之后要改成动态变化的高度,手风琴展开后是个列表,并且列表每行高度 ...

  3. MYSQL下载 环境配置 修改密码 基本SQL语句

    目录 存取数据的演变史 数据库软件应用史 数据库的本质 数据库的分类 关系型数据库 特征 常见关系型数据库 非关系型数据库 特征 常见非关系型数据库 mysql简介 mysql下载 启动mysql 系 ...

  4. 运行typhoon程序的三种方式

    cmd直接编写运行:用于较短 临时执行的代码 解释器命令运行:可以编写较长的代码 并且可以长久保存 利用IDE工具编写:IDE开发者工具自动提示 携带各种功能插件 编写代码效率更高更快

  5. 更改jenkins的工作目录

    1.原始工作空间 2.目的盘符 3.任务管理器,找到Jenkins邮件转到详细信息 4.找到jenkins.exe打开文件所在位置 5.找到jenkins.xml打开 6.修改value值 改前: 改 ...

  6. Linux系统CentOS6找回密码解决方法

    1.首先在开机启动的时候快速按键盘上的"E"键 或者"ESC"键,会进入如下界面,按E键: 2.出现下面这个界面,选择第二项以kernel开头,再次按" ...

  7. 基于.NetCore开发博客项目 StarBlog - (21) 开始开发RESTFul接口

    前言 最近电脑坏了,开源项目的进度也受到一些影响 这篇酝酿很久了,作为本系列第二部分(API接口开发)的第一篇,得想一个好的开头,想着想着就鸽了好久,索性不扯那么多了,直接开写吧~ 关于RESTFul ...

  8. 前缀树(Tire)—Python

    核心思想 空间换时间,是一种用于快速减速的多叉树结构,利用字符串的公共前缀来降低时间 优缺点: 优点:查询效率高,减少字符比较 缺点:内存消耗较大 每次都会从头向下一直到字符串结尾 前缀树 1 单个字 ...

  9. vuex的使用详解

    一.下载vuex 在store文件夹下的index.js中    官方文档:https://vuex.vuejs.org/zh/ 需要使用的页面 sotre中 mutations的调用方法 store ...

  10. ClickHouse MergeTree引擎

    Clickhouse 中最强大的表引擎当属 MergeTree (合并树)引擎及该系列(*MergeTree)中的其他引擎. MergeTree 系列的引擎被设计用于插入极大量的数据到一张表当中.数据 ...