[题解] Atcoder AGC 005 F Many Easy Problems NTT,组合数学
题目
观察当k固定时答案是什么。先假设每个节点对答案的贡献都是\(\binom{n}{k}\),然后再减掉某个点没有贡献的选点方案数。对于一个节点i,它没有贡献的方案数显然就是所有k个节点都选在i连出去的某一个子树内的方案数。枚举节点i,把i连出去的每一个子树的size都加入一个序列c,则答案为\(\binom{n}{k}\cdot n-\sum_{i=0}^{|c|-1}\binom{c_i}{k}\)。
考虑\(k=1\cdots n\)的情况:
\(ans_k=\binom{n}{k}\cdot n-\sum_{i=0}^{|c|-1}\binom{c_i}{k}=\binom{n}{k}\cdot n-\sum_{i=0}^{|c|-1}\binom{c_i}{c_i-k}=\binom{n}{k}\cdot n-\sum_{i=0}^{|c|-1}\frac{c_i!}{k!(c_i-k)!}\)
\(-ans_k k!+\binom nk\cdot n\cdot k!=\sum_{i=0}^{|c|-1}\frac{c_i!}{(c_i-k)!}\)
统计每种\(c_i\)的出现次数后,右边就变成了一个减法卷积的形式,一遍NTT即可。需要注意题目中的模数的原根是5.时间复杂度\(O(nlogn)\)。
点击查看代码
#include <bits/stdc++.h>
#define rep(i,n) for(int i=0;i<n;++i)
#define repn(i,n) for(int i=1;i<=n;++i)
#define LL long long
#define pii pair <LL,LL>
#define fi first
#define se second
#define mpr make_pair
#define pb push_back
using namespace std;
const LL MOD=924844033;
LL qpow(LL x,LL a)
{
LL res=x,ret=1;
while(a>0)
{
if((a&1)==1) ret=ret*res%MOD;
a>>=1;
res=res*res%MOD;
}
return ret;
}
namespace poly
{
vector <LL> rev;
void ntt(vector <LL> &a,LL G)
{
LL nn=a.size(),gn,g,x,y;vector <LL> tmp=a;
rep(i,nn) a[i]=tmp[rev[i]];
for(int len=1;len<nn;len<<=1)
{
gn=qpow(G,(MOD-1)/(len<<1));
for(int i=0;i<nn;i+=(len<<1))
{
g=1;
for(int j=i;j<i+len;++j,(g*=gn)%=MOD)
{
x=a[j];y=a[j+len]*g%MOD;
a[j]=(x+y)%MOD;a[j+len]=(x-y+MOD)%MOD;
}
}
}
}
vector <LL> convolution(vector <LL> a,vector <LL> b,LL G)
{
LL nn=1,bt=0,sv=a.size()+b.size()-1;while(nn<a.size()+b.size()-1) nn<<=1LL,++bt;
while(a.size()<nn) a.pb(0);while(b.size()<nn) b.pb(0);
rev.clear();
rep(i,nn)
{
rev.pb(0);
rev[i]=(rev[i>>1]>>1)|((i&1)<<(bt-1));
}
ntt(a,G);ntt(b,G);
rep(i,nn) (a[i]*=b[i])%=MOD;
ntt(a,qpow(G,MOD-2));
while(a.size()>sv) a.pop_back();
LL inv=qpow(nn,MOD-2);
rep(i,a.size()) (a[i]*=inv)%=MOD;
return a;
}
vector <LL> inverse(vector <LL> a,LL G)
{
if(a.size()==1) return vector <LL>{qpow(a[0],MOD-2)};
vector <LL> aa=a;while(aa.size()>(a.size()+1)>>1) aa.pop_back();
vector <LL> bb=inverse(aa,G);
LL nn=1,bt=0,sv=a.size();while(nn<a.size()*2) nn<<=1LL,++bt;
while(a.size()<nn) a.pb(0);while(bb.size()<nn) bb.pb(0);
rev.clear();
rep(i,nn)
{
rev.pb(0);
rev[i]=(rev[i>>1]>>1)|((i&1)<<(bt-1));
}
ntt(a,G);ntt(bb,G);
rep(i,nn) a[i]=(2LL-a[i]*bb[i]%MOD+MOD)*bb[i]%MOD;
ntt(a,qpow(G,MOD-2));
while(a.size()>sv) a.pop_back();
LL inv=qpow(nn,MOD-2);
rep(i,a.size()) (a[i]*=inv)%=MOD;
return a;
}
vector <LL> sqrt1(vector <LL> a,LL G)//常数项为1
{
if(a.size()==1) return vector <LL>{1};
vector <LL> aa=a;while(aa.size()>(a.size()+1)>>1) aa.pop_back();
vector <LL> bb=sqrt1(aa,G);while(bb.size()<a.size()) bb.pb(0);
vector <LL> bbb=inverse(bb,G);
LL nn=1,bt=0,sv=a.size();while(nn<a.size()*2) nn<<=1LL,++bt;
while(a.size()<nn) a.pb(0);while(bb.size()<nn) bb.pb(0);while(bbb.size()<nn) bbb.pb(0);
rev.clear();
rep(i,nn)
{
rev.pb(0);
rev[i]=(rev[i>>1]>>1)|((i&1)<<(bt-1));
}
LL mul=qpow(2,MOD-2);
ntt(a,G);ntt(bb,G);ntt(bbb,G);
rep(i,nn) a[i]=mul*(bb[i]+bbb[i]*a[i]%MOD)%MOD;
ntt(a,qpow(G,MOD-2));
while(a.size()>sv) a.pop_back();
LL inv=qpow(nn,MOD-2);
rep(i,a.size()) (a[i]*=inv)%=MOD;
return a;
}
}
LL n,sz[200010],fac[200010],inv[200010],ans[200010];
vector <LL> g[200010],A,B,C;
LL CC(LL nn,LL mm){return fac[nn]*inv[mm]%MOD*inv[nn-mm]%MOD;}
void dfs(LL pos,LL par)
{
sz[pos]=1;
rep(i,g[pos].size()) if(g[pos][i]!=par)
{
dfs(g[pos][i],pos);
sz[pos]+=sz[g[pos][i]];
++A[sz[g[pos][i]]];
}
if(pos!=1) ++A[n-sz[pos]];
}
int main()
{
fac[0]=1;repn(i,200005) fac[i]=fac[i-1]*(LL)i%MOD;
rep(i,200003) inv[i]=qpow(fac[i],MOD-2);
cin>>n;
LL x,y;
rep(i,n-1)
{
scanf("%lld%lld",&x,&y);
g[x].pb(y);g[y].pb(x);
}
rep(i,n) A.pb(0);
dfs(1,0);
rep(i,n) (A[i]*=fac[i])%=MOD;
rep(i,n) B.pb(inv[i]);
reverse(B.begin(),B.end());
C=poly::convolution(A,B,5);
repn(i,n)
{
ans[i]=CC(n,i)*n%MOD;
(ans[i]+=MOD-(i+n-1>=C.size() ? 0LL:C[i+n-1])*inv[i]%MOD)%=MOD;
}
repn(i,n) printf("%lld\n",ans[i]);
return 0;
}
[题解] Atcoder AGC 005 F Many Easy Problems NTT,组合数学的更多相关文章
- AtcoderGrandContest 005 F. Many Easy Problems
$ >AtcoderGrandContest \space 005 F. Many Easy Problems<$ 题目大意 : 有一棵大小为 \(n\) 的树,对于每一个 \(k \i ...
- 【AtCoder】AGC005 F - Many Easy Problems 排列组合+NTT
[题目]F - Many Easy Problems [题意]给定n个点的树,定义S为大小为k的点集,则f(S)为最小的包含点集S的连通块大小,求k=1~n时的所有点集f(S)的和取模92484403 ...
- 【AGC 005F】Many Easy Problems
Description One day, Takahashi was given the following problem from Aoki: You are given a tree with ...
- AtCoder Grand Contest 005F - Many Easy Problems
$n \leq 200000$的树,从树上选$k$个点的一个方案会对$Ans_k$产生大小为“最小的包括这$k$个点的连通块大小”的贡献.求每个$Ans_k$.膜924844033. 看每个点对$An ...
- 【AGC005F】Many Easy Problems (NTT)
Description 给你一棵\(~n~\)个点的树和一个整数\(~k~\).设为\(~S~\)为树上某些点的集合,定义\(~f(S)~\)为最小的包含\(~S~\)的联通子图的大小.\(~n~ ...
- 【AtCoder】AGC005F - Many Easy Problems
题解 我们把一个点的贡献转化为一条边的贡献,因为边的数量是点的数量-1,最后再加上选点方案数\(\binom{n}{k}\)即可 一条边的贡献是\(\binom{n}{k} - \binom{a}{k ...
- 解题:AT2064 Many Easy Problems&EXNR #1 T3 两开花
题面 两道题比较像,放在一起写了,后者可以看成前者的加强版 (sto ztb orz) 先看AT那道题 考虑计算每个点的贡献,用容斥计算:每个点没有贡献当且仅当选的所有点都在以他为根时的一个子节点的子 ...
- 【CodeForces】913 D. Too Easy Problems
[题目]D. Too Easy Problems [题意]给定n个问题和总时限T,每个问题给定时间ti和限制ai,当解决的问题数k<=ai时问题有效,求在时限T内选择一些问题解决的最大有效问题数 ...
- [atcoder contest 010] F - Tree Game
[atcoder contest 010] F - Tree Game Time limit : 2sec / Memory limit : 256MB Score : 1600 points Pro ...
随机推荐
- Object类的toString方法和equals方法
Object类 概述 java.long.Object 类是java语言中的根类,即所有类的父类.它中描述的所有方法子类都可以使用.在对象实例化的时候,最终的父类就是Object 类Object是类层 ...
- python zip、*、**理解
zip函数 zip()一般传入可迭代对象(不止一个),将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的zip对象(python2返回元组),需要手动使用tuple.list等序列转换成可使 ...
- 从零开始Blazor Server(2)--整合数据库
开篇 上一篇文章我们留了个尾巴,没有把freesql整合进去,这篇文章我们来整合. 目前的思路呢,是做一个简单的四不像的RABC,也有用户.角色. 权限三部分. 但是其中每个用户只有一个角色,即用户和 ...
- Python 函数修饰器
# 一.用函数修饰函数 #!/usr/bin/python3 def decorate_func(func): def call(*args, **kwargs): print('you have c ...
- Nginx api接口调用配置
1 # Nginx api接口调用配置 2 3 # 什么是跨域同源? 4 # 同源策略:协议(http.https.wss--)+域名+端口=一个完整的网站 5 # 跨域:当前所在的网站post(ge ...
- 【面试题】为什么有时用Vue.use()?及Vue.use()的作用及原理是什么?
Vue.use()的作用及原理 点击打开视频讲解 在Vue中引入使用第三方库通常我们都会采用import的形式引入进来 但是有的组件在引入之后又做了Vue.use()操作 有的组件引入进来又进行了Vu ...
- mui 登录跳转到首页之后顶部选项卡不灵敏问题
前段时间开发一个用mui开发app的时候遇到了登录跳转到首页之后顶部选项卡会失灵的问题,多次尝试之后终于解决了,趁现在还有点印象记录一下吧. 一开始我是用mui.openWindow来新开首页的,出了 ...
- Java学习第七周
这周学习了集合,stream流等知识 List集合 – List系列集合:添加的元素是有序,可重复,有索引 1.ArrayList: 添加的元素是有序,可重复,有索引 2.LinkedList: 添加 ...
- package.json 与 package-lock.json 的关系
模块化开发在前端越来越流行,使用 node 和 npm 可以很方便的下载管理项目所需的依赖模块.package.json 用来描述项目及项目所依赖的模块信息. 那 package-lock.json ...
- 给你的博客加个aplayer
1.在 layout.ejs 中 body 标签内粘贴入以下 <!--音乐--> <link rel="stylesheet" href="https: ...