HDU 5362 Just A String 指数型母函数
题面
Description
用m种字母构造一个长度为n的字符串,如果一个字符串的字母重组后可以形成一个回文串则该串合法,问随机构成的长为n的字符串的合法子串数目期望值.
Input
第一行一整数T表示用例组数,每组用例输入两个整数n,m(1≤n,m≤2000).
Output
问构成的字符串的合法子串数目期望值,结果乘m^n后模10^9+7.
题解
这是一道很好的练指数型母函数的题。
万幸它乘了个m^n,刚好把期望中的m^-n消去了。
考虑到合法字串的特征,它必须最多只有一种字母出现奇数次,其余出现偶数次,那我们分子串长度为奇偶(即,是否有字母出现奇数次)两种情况讨论。
奇的生成函数:
二项式展开:
最终的答案还要考虑其在母串中的出现次数
偶的生成函数:
二项式展开:
最终的答案考虑其在母串中的出现次数
把组合数和幂都预处理,最终复杂度
CODE
大常数TLE的代码QAQ
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize("Ofast")
#pragma GCC optimize("inline")
#pragma GCC optimize("-fgcse")
#pragma GCC optimize("-fgcse-lm")
#pragma GCC optimize("-fipa-sra")
#pragma GCC optimize("-ftree-pre")
#pragma GCC optimize("-ftree-vrp")
#pragma GCC optimize("-fpeephole2")
#pragma GCC optimize("-ffast-math")
#pragma GCC optimize("-fsched-spec")
#pragma GCC optimize("unroll-loops")
#pragma GCC optimize("-falign-jumps")
#pragma GCC optimize("-falign-loops")
#pragma GCC optimize("-falign-labels")
#pragma GCC optimize("-fdevirtualize")
#pragma GCC optimize("-fcaller-saves")
#pragma GCC optimize("-fcrossjumping")
#pragma GCC optimize("-fthread-jumps")
#pragma GCC optimize("-funroll-loops")
#pragma GCC optimize("-fwhole-program")
#pragma GCC optimize("-freorder-blocks")
#pragma GCC optimize("-fschedule-insns")
#pragma GCC optimize("inline-functions")
#pragma GCC optimize("-ftree-tail-merge")
#pragma GCC optimize("-fschedule-insns2")
#pragma GCC optimize("-fstrict-aliasing")
#pragma GCC optimize("-fstrict-overflow")
#pragma GCC optimize("-falign-functions")
#pragma GCC optimize("-fcse-skip-blocks")
#pragma GCC optimize("-fcse-follow-jumps")
#pragma GCC optimize("-fsched-interblock")
#pragma GCC optimize("-fpartial-inlining")
#pragma GCC optimize("no-stack-protector")
#pragma GCC optimize("-freorder-functions")
#pragma GCC optimize("-findirect-inlining")
#pragma GCC optimize("-fhoist-adjacent-loads")
#pragma GCC optimize("-frerun-cse-after-loop")
#pragma GCC optimize("inline-small-functions")
#pragma GCC optimize("-finline-small-functions")
#pragma GCC optimize("-ftree-switch-conversion")
#pragma GCC optimize("-foptimize-sibling-calls")
#pragma GCC optimize("-fexpensive-optimizations")
#pragma GCC optimize("-funsafe-loop-optimizations")
#pragma GCC optimize("inline-functions-called-once")
#pragma GCC optimize("-fdelete-null-pointer-checks")
//优化
#include<cstdio>
#include<iostream>
#include<cstring>
#include<vector>
#include<queue>
#include<stack>
#include<cmath>
#include<algorithm>
#define LL long long
#define MAXN 105
#define rg register
#define DB double
using namespace std;
inline int read() {
int f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s == '-') f = -1;s = getchar();}
while(s >= '0' && s <= '9') {x = x * 10 + s - '0';s = getchar();}
return x * f;
}
int mod = 1000000007ll;
inline int qkpow(int a,int b) {
int res = 1;
while(b) {
if(b&1) res = 1ll*res*a % mod;
a = 1ll*a*a % mod;
b>>=1;
}
return res % mod;
}
int n,m,q,i,j,s,o,k,t;
int c[2005][2005];
int po[4010][2005];
int dp[2005],inv2 = qkpow(2,mod-2),inv2m[2005];
bool f[2005];
inline int POW(int i,int j) {
return po[i + 2000][j];
}
int main() {
c[0][0] = 1ll;inv2m[0] = 1ll;
for(rg int i = 1;i <= 2000;++ i) {
c[i][0] = c[i][i] = 1ll;
for(rg int j = 1;j < i;++ j) c[i][j] = (0ll + c[i-1][j]+c[i-1][j-1]) % mod;
inv2m[i] = (LL)inv2m[i-1]*inv2%mod;
}
for(rg int i = 0;i <= 4002;++ i) {
po[i][0] = 1ll;
for(rg int j = 1;j <= 2000;++ j) {
po[i][j] = ((LL)po[i][j-1]*(i-2000ll) + mod) % mod;
}
}
rg int T = read();
while(T--) {
n = read();m = read();
int AS = 0;
for(rg int i = 1;i <= n;++ i) {
if(i&1) {
int ans = (LL)inv2m[m] * (n - i + 1ll) % mod * POW(m,n-i) % mod * m % mod;
int ans2 = 0;
for(rg int j = 0;j < m;++ j) {
ans2 = (0ll+ans2 + mod + (POW((j<<1)+2-m,i) + mod - POW((j<<1)-m,i) + mod) * c[m-1][j] % mod) % mod;
}
ans = (LL)ans * ans2 % mod;
AS = (0ll + AS + mod + ans) % mod;
}
else {
int ans = (LL)inv2m[m] * (n - i + 1ll) % mod * POW(m,n-i) % mod;
int ans2 = 0;
for(rg int j = 0;j <= m;++ j) {
ans2 = (0ll+ans2 + mod + ((LL)POW((j<<1)-m,i) + mod) * c[m][j] % mod) % mod;
}
ans = (LL)ans * ans2 % mod;
AS = (0ll + AS + mod + ans) % mod;
}
}
printf("%d\n",AS);
}
return 0;
}
HDU 5362 Just A String 指数型母函数的更多相关文章
- HDU 2065 “红色病毒”问题 --指数型母函数
这种有限制的类棋盘着色问题一般可以用指数型母函数来解决,设Hn表示这样的着色数,首先H0=1,则Hn等于四个字母的(A,B,C,D)的多重集合的n排列数,其中每个字母的重数是无穷,且要求A,C出现的次 ...
- 2015 Multi-University Training Contest 6 hdu 5362 Just A String
Just A String Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)T ...
- 母函数 <普通母函数(HDU - 1028 ) && 指数型母函数(hdu1521)>
给出我初学时看的文章:母函数(对于初学者的最容易理解的) 普通母函数--------->HDU - 1028 例题:若有1克.2克.3克.4克的砝码各一 枚,能称出哪几种重量?各有几种可能方案? ...
- 排列组合 HDU - 1521 -指数型母函数
排列组合 HDU - 1521 一句话区分指数型母函数和母函数就是 母函数是组合数,指数型母函数是排列数 #include<bits/stdc++.h> using namespace s ...
- hdu1521 指数型母函数
排列组合 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submi ...
- hdu1521:排列组合---指数型母函数
题意: n种元素,每种有 ni个,选出 m 个的排列有多少种 题解: 指数型母函数的裸题 x^n 项的系数为 an/n!.... 代码如下: #include <iostream> #i ...
- 【指数型母函数+非递归快速幂】【HDU2065】"红色病毒"问题
大一上学完数分上后终于可以搞懂指数型母函数了.. 需要一点关于泰勒级数的高数知识 题目在此: "红色病毒"问题 Time Limit: 1000/1000 MS (Java/Oth ...
- 【指数型母函数】hdu1521 排列组合
#include<cstdio> #include<cstring> using namespace std; int n,m,jiecheng[11]; double a[1 ...
- hdu1521 排列组合 指数型母函数模板题
排列组合 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...
随机推荐
- 数位 dp 总结
数位 dp 总结 特征 问你一个区间 \([L,R]\) 中符合要求的数的个数 一个简单的 trick :把答案拆成前缀和 \(Ans(R)-Ans(L-1)\) 如何求 \(Ans()\) ,就要用 ...
- 技术分享 | 想做App测试就一定要了解的App结构
本文节选自霍格沃兹测试开发学社内部教材 app 的结构包含了 APK 结构和 app 页面结构两个部分 APK结构 APK 是 Android Package 的缩写,其实就是 Android 的安装 ...
- 【Srping】事务的执行原理(一)
在使用事务的时候需要添加@EnableTransactionManagement注解来开启事务,那么就从@EnableTransactionManagement入手查看一下事务的执行原理. @Enab ...
- Redis 中的事务分析,Redis 中的事务可以满足ACID属性吗?
Redis 中的事务 什么是事务 1.原子性(Atomicity) 2.一致性(Consistency) 3.隔离性(Isolation) 4.持久性(Durability) 分析下 Redis 中的 ...
- SAP 文本框多行输入
REPORT zjw_test01. CONSTANTS: gc_text_line_length TYPE i VALUE 72. TYPES: text_table_type(gc_text_li ...
- C# --- SqlserverHelper帮助类、快速实现增删改查
using System;using System.Data; using System.Data.SqlClient; namespace Demo.WorkerService { public c ...
- 抓到 Netty 一个 Bug,顺带来透彻地聊一下 Netty 是如何高效接收网络连接的
本系列Netty源码解析文章基于 4.1.56.Final版本 对于一个高性能网络通讯框架来说,最最重要也是最核心的工作就是如何高效的接收客户端连接,这就好比我们开了一个饭店,那么迎接客人就是饭店最重 ...
- 链表设计与Java实现,手写LinkedList这也太清楚了吧!!!
链表设计与实现 在谈链表之前,我们先谈谈我们平常编程会遇到的很常见的一个问题.如果在编程的时候,某个变量在后续编程中仍需使用,我们可以用一个局部变量来保存该值,除此之外一个更加常用的方法就是使用容器了 ...
- 阿里 Maven仓库
<?xml version="1.0" encoding="UTF-8"?> <settings xmlns="http://mav ...
- jdbc 05: 查询结果集
jdbc连接mysql,查询结果集 package com.examples.jdbc.o5_结果集查询; import java.sql.*; import java.util.ResourceBu ...