题面

有两棵

n

n

n 个点的有根树

T

1

T_1

T1​,

T

2

T_2

T2​,根是

1

1

1 ,共用编号

1

1

1~

n

n

n。求最大的点集

S

S

S 满足每个点在

T

1

T_1

T1​ 中一条到根的链上,且任意两个点在

T

2

T_2

T2​ 中没有祖先关系

输出该点集的大小,

t

t

t 组数据。

1

t

3

×

1

0

5

,

2

n

3

×

1

0

5

,

n

3

×

1

0

5

1\leq t\leq3\times10^5~,~2\leq n\leq 3\times 10^5~,~\sum n\leq 3\times 10^5

1≤t≤3×105 , 2≤n≤3×105 , ∑n≤3×105

题解

题面我已经转化了一部分了,继续转化:

我们处理出每个点在

T

2

T_2

T2​ 中的

d

f

s

\rm dfs

dfs 序,记为

d

f

n

[

i

]

{\rm dfn}[i]

dfn[i],并求出每个点在

T

2

T_2

T2​ 的子树内节点(包括自己)

d

f

n

[

j

]

{\rm dfn}[j]

dfn[j] 的范围,记为

[

l

i

,

r

i

]

[l_i,r_i]

[li​,ri​] ,不妨称它为点

i

i

i 的区间。

那么一个集合

S

S

S 可行,等价于集合中的点在

T

1

T_1

T1​ 一条到跟的链上,且集合中每个点的区间两两无交集

我们还可以发现一些性质:每两个点的区间要么无交集,要么存在包含关系,且一个左端点只对应一个右端点。那么我们就可以想出一个贪心策略:互相包含的区间,取较小的保留。把它挪回树上,其实就相当于存在一个点的子孙可选的时候该点不选最优一样。

接下来就简单了。我们只需要从

T

1

T_1

T1​ 的根开始往下

d

f

s

\rm dfs

dfs ,每到一个点往某数据结构中加入自己的区间:

  • 如果被数据结构中原有的更大区间包含了,那么把那个大区间删掉,把自己加进去。
  • 如果包含了数据结构中原有的至少一个小区间,那么不加自己。
  • 否则,把自己加入进去,此时数据结构大小(即答案)+1。

然后遍历儿子。

回溯的时候数据结构要退回来时的状态。

具体用的数据结构就五花八门了,比较懒的可以直接用 set 之类,稍微比较聪明的可以打打树状数组或常数优秀的 zkw 线段树(有的人利用了两棵树中父亲编号小于儿子编号的特性,打出最优秀的三行朴素树状数组跑了

R

a

n

k

1

\rm Rank~1

Rank 1)。

CODE

下面是个比较好看懂的 set 代码

#include<set>
#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 300005
#define ENDL putchar('\n')
#define LL long long
#define DB double
#define lowbit(x) ((-x) & (x))
#define SI set<int>::iterator
LL read() {
LL f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s=='-')f = -f;s = getchar();}
while(s >= '0' && s <= '9') {x=x*10+(s-'0');s = getchar();}
return f * x;
}
int n,m,i,j,s,o,k;
vector<int> g0[MAXN];
int L[MAXN],R[MAXN],lR[MAXN],tim;
void dfs0(int x,int ff) {
L[x] = ++ tim;
for(int i = 0;i < (int)g0[x].size();i ++) {
if(g0[x][i] != ff) dfs0(g0[x][i],x);
}R[x] = tim; lR[L[x]] = R[x];
return ;
}
vector<int> g[MAXN];
int d[MAXN],dfn[MAXN],rr[MAXN],cnt,ans;
set<int> st;
void dfs(int x,int ff) {
int ad = 0;
if(st.empty()) st.insert(L[x]);
else {
SI i = st.lower_bound(L[x]);
if(i != st.begin()) {
i --;
if(lR[*i] >= R[x]) ad = *i,st.erase(ad),st.insert(L[x]);
else {
i ++;
if(i == st.end() || *i > R[x]) st.insert(L[x]);
}
}
else if(i == st.end() || *i > R[x]) st.insert(L[x]);
}
ans = max(ans,(int)st.size());
for(int i = 0;i < (int)g[x].size();i ++) {
if(g[x][i] != ff)
dfs(g[x][i],x);
}
if(st.find(L[x]) != st.end()) st.erase(L[x]);
if(ad) st.insert(ad);
return ;
}
int main() {
int T = read();
while(T --) {
n = read();
tim = 0; cnt = 0;
st.clear();
for(int i = 1;i <= n;i ++) {
g0[i].clear();g[i].clear();lR[i] = 0;
}
for(int i = 2;i <= n;i ++) {
s = read(); g[s].push_back(i);
}
for(int i = 2;i <= n;i ++) {
s = read(); g0[s].push_back(i);
}
dfs0(1,0);ans = 0;dfs(1,0);
printf("%d\n",ans);
}
return 0;
}

CF1528C Trees of Tranquillity(图论,数据结构)的更多相关文章

  1. [ An Ac a Day ^_^ ] hdu 1662 Trees on the level 数据结构 二叉树

    紫书上的原题 正好学数据结构拿出来做一下 不知道为什么bfs的队列一定要数组模拟…… 还可以练习一下sscanf…… #include<stdio.h> #include<iostr ...

  2. 图论&数据结构——并查集

    Wikioi 4246 NOIP模拟赛Day2T1 奶牛的身高  题目描述 Description 奶牛们在FJ的养育下茁壮成长.这天,FJ给了奶牛Bessie一个任务,去看看每个奶牛场中若干只奶牛的 ...

  3. 2021record

    2021-10-14 P2577 [ZJOI2004]午餐 2021-10-13 CF815C Karen and Supermarket(小小紫题,可笑可笑) P6748 『MdOI R3』Fall ...

  4. Noip 训练指南

    目录 Noip 训练指南 图论 数据结构 位运算 期望 题解 Noip 训练指南 目前完成 \(4 / 72\) 图论 [ ] 跳楼机 [ ] 墨墨的等式 [ ] 最优贸易 [ ] 泥泞的道路 [ ] ...

  5. TokuDB性能测试报告

    一 .背景介绍 近年来,TokuDB作为MySQL的大数据(Big Data)存储引擎受到人们的普遍关注.其架构的核心基于一种新的叫做分形树(Fractal Trees)的索引数据结构,该结构是缓存无 ...

  6. Disruptor——一种可替代有界队列完成并发线程间数据交换的高性能解决方案

    本文翻译自LMAX关于Disruptor的论文,同时加上一些自己的理解和标注.Disruptor是一个高效的线程间交换数据的基础组件,它使用栅栏(barrier)+序号(Sequencing)机制协调 ...

  7. NOIP考点

    NOIP考点 基础算法 图 树 数论 数据结构 动态规划 搜索 其他算法 省选知识点汇总 图论 数据结构 字符串相关算法及数据结构 数学 计算几何 搜索 动态规划 其他算法 转自:巨佬的博客 加*号是 ...

  8. Luogu P3783 [SDOI2017]天才黑客

    题目大意 一道码量直逼猪国杀的图论+数据结构题.我猪国杀也就一百来行 首先我们要看懂鬼畜的题意,发现其实就是在一个带权有向图上,每条边有一个字符串信息.让你找一个点出发到其它点的最短路径.听起来很简单 ...

  9. Marked Ancestor [AOJ2170] [并查集]

    题意: 有一个树,有些节点染色,每次有两种操作,第一,统计该节点到离它最近的染色父亲结点的的号码(Q),第二,为某一个节点染色(M),求第一种操作和. 输入: 输入由多个数据集组成.每个数据集都有以下 ...

随机推荐

  1. 【2022-06-16】Pycharm的下载与安装使用

    一.Pycharm软件简介 产品简介 PyCharm是一种Python IDE(Integrated Development Environment,集成开发环境),带有一整套可以帮助用户在使用Pyt ...

  2. 敲了几万行源码后,我给Mybatis画了张“全地图”

    作者:小傅哥 博客:https://bugstack.cn 沉淀.分享.成长,让自己和他人都能有所收获! 一.说说:"产"后感受 有人跟我说,手写Spring难,手写Mybatis ...

  3. 送分题,ArrayList 的扩容机制了解吗?

    1. ArrayList 了解过吗?它是啥?有啥用? 众所周知,Java 集合框架拥有两大接口 Collection 和 Map,其中,Collection 麾下三生子 List.Set 和 Queu ...

  4. Elasticsearch学习系列三(搜索案例实战)

    Query DSL Es提供了基于JSON的完整查询DSL(Domain Specific Language 特定域的语言)来定义查询.将查询DSL视为查询的AST(抽象语法树).它由两种子句组成: ...

  5. 写了个基于 MacOS + iTerm2 自动打开窗口执行命令的工具

    大家好,我是秋风,今天要给大家带来的这个工具是我最近写的 一个 npm 工具.mmt 是基于 MacOS + iTerm2 ,目的主要是为了提高日常生活中的效率,接下来我带大家看看一些常用的一些场景. ...

  6. 安装@parcel/transformer-image注意的问题

    安装前配置 npm config get cache 键入以上命令即可找到npm缓存路径,然后找到路径下的_libvips文件夹. 一般需要以下两个文件,这里以win环境为例.把文件放到_libvip ...

  7. Linux文本三剑客-sed

    sed工作原理: sed: Stream Editor.流编辑器 --- 属于行编辑工具 sed和vim一样都是文本编辑工具. 行编辑工具:一行一行处理文件内容 全屏编辑工具:一次性将文件内容加载到内 ...

  8. Bitbucket 使用 SSH 拉取仓库失败的问题

    问题 在 Bitbucket 使用 Linux 机器上 ssh-keygen 工具生成的公钥作为 API KEY,然后在 Jenkins 里面存储对应的 SSH 私钥,最后执行 Job 的时候,Win ...

  9. linux中CentOS配置文件编辑错误撤回

    未编辑状态下 U键 撤销 DD 快速删除

  10. Spring框架系列(10) - Spring AOP实现原理详解之AOP代理的创建

    上文我们介绍了Spring AOP原理解析的切面实现过程(将切面类的所有切面方法根据使用的注解生成对应Advice,并将Advice连同切入点匹配器和切面类等信息一并封装到Advisor).本文在此基 ...