转自:https://zhuanlan.zhihu.com/p/26599934

红黑树(Red-Black Tree,RBT)是一种平衡的二叉查找树,前面的红黑树原理与实现这篇文章中详细介绍了红黑树的细节。在Linux的内核源代码中已经给我们实现了一棵红黑树,我们可以方便地拿过来进行使用。本文将参考Linux内核的源码和文档资料,介绍Linux内核中红黑树的实现细节及使用方法。

简介

Linux有很多地方用到了红黑树,比如高精度计时器使用红黑树树组织定时请求,EXT3文件系统也使用红黑树树来管理目录,虚拟存储管理系统也有用红黑树树进行VMAs(Virtual Memory Areas)的管理。前面的红黑树一文已经详细介绍过红黑树的细节,对红黑树不熟悉的读者建议先阅读该文: Account Suspended

本文参考的Linux内核版本为linux-2.6.39.4,可以从官网 Index of /pub/linux/kernel/v2.6/ 上进行下载。其中关于红黑树的文件位置为:

  • 头文件: linux-2.6.39.4\include\linux\rbtree.h
  • 实现代码:linux-2.6.39.4\lib\rbtree.c
  • 文档说明:linux-2.6.39.4\Documentation\rbtree.txt

结构定义

Linux内核红黑树的实现与传统的实现方式有些不同,它对针对内核对速度的需要做了优化。每一个rb_node节点是嵌入在用RB树进行组织的数据结构中,而不是用rb_node指针进行数据结构的组织。

Linux内核中红黑树节点的定义如下,其中rb_node是节点类型,而rb_root是仅包含一个节点指针的类,用来表示根节点。

struct rb_node
{
unsigned long rb_parent_color;
#define RB_RED 0
#define RB_BLACK 1
struct rb_node *rb_right;
struct rb_node *rb_left;
} __attribute__((aligned(sizeof(long)))); struct rb_root
{
struct rb_node *rb_node;
};

粗略一看,这里似乎没有定义颜色的域,但这就是这里红黑树实现的一个巧妙的地方。rb_parent_color这个域其实同时包含了颜色信息以及父亲节点的指针,因为该域是一个long的类型,需要大小为sizeof(long)的对齐,那么在一般的32位机器上,其后两位的数值永远是0,于是可以拿其中的一位来表示颜色。事实上,这里就是使用了最低位来表示颜色信息。明白了这点,那么以下关于父亲指针和颜色信息的操作都比较容易理解了,其本质上都是对rb_parent_color的位进行操作。

#define rb_parent(r)   ((struct rb_node *)((r)->rb_parent_color & ~3)) //低两位清0
#define rb_color(r) ((r)->rb_parent_color & 1) //取最后一位
#define rb_is_red(r) (!rb_color(r)) //最后一位为0?
#define rb_is_black(r) rb_color(r) //最后一位为1?
#define rb_set_red(r) do { (r)->rb_parent_color &= ~1; } while (0) //最后一位置0
#define rb_set_black(r) do { (r)->rb_parent_color |= 1; } while (0) //最后一位置1 static inline void rb_set_parent(struct rb_node *rb, struct rb_node *p) //设置父亲
{
rb->rb_parent_color = (rb->rb_parent_color & 3) | (unsigned long)p;
}
static inline void rb_set_color(struct rb_node *rb, int color) //设置颜色
{
rb->rb_parent_color = (rb->rb_parent_color & ~1) | color;
}

然后是几个宏定义:

#define RB_ROOT	(struct rb_root) { NULL, }                         //初始根节点指针
#define rb_entry(ptr, type, member) container_of(ptr, type, member)//包含ptr的结构体指针
#define RB_EMPTY_ROOT(root) ((root)->rb_node == NULL) //判断树是否空
#define RB_EMPTY_NODE(node) (rb_parent(node) == node) //判断节点是否空,父亲是否等于自身
#define RB_CLEAR_NODE(node) (rb_set_parent(node, node)) //设置节点为空,父亲等于自身

这里需要注意的是container_of本身也是个宏,其定义在kernel.h中:

#define container_of(ptr, type, member) ({                \
const typeof( ((type *)0)->member ) *__mptr = (ptr); \
(type *)( (char *)__mptr - offsetof(type,member) );})

而其中的offsetof则定义在stddef.h中:

#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)

offsetof宏取得member成员在type对象中相对于对象首地址的偏移量,具体是通过把0强制转化成为type类型指针,然后引用成员member,此时得到的指针大小即为偏移量(因为对象首地址为0)。container_of宏取得包含ptr的数据结构的指针,具体是把ptr转化为type对象中member类型的指针,然后减去member类型在type对象的偏移量得到type对象的首地址。

红黑树操作

接下来的__rb_rotate_left和__rb_rotate_right就是对红黑树进行的左旋和右旋操作。注意,代码中的第一个if语句中是=而不是==,意思是先赋值,然后再对该值判断是否为空,如果不为空的情况下才设置该节点的父亲。这样代码显得非常简洁,但如果以为是==的比较,则可能会感到困惑,不够他这里也使用了两个小括号进行提示,因为一般情况只需一个括号即可。

void __rb_rotate_left(struct rb_node *node, struct rb_root *root);
void __rb_rotate_right(struct rb_node *node, struct rb_root *root);

而rb_insert_color则是把新插入的节点进行着色,并且修正红黑树使其达到平衡,其效果就是前文的insertFixup的效果。

void rb_insert_color(struct rb_node *, struct rb_root *);

插入节点时需要把新节点指向其父亲节点,这可以通过rb_link_node函数完成:

void rb_link_node(struct rb_node * node, struct rb_node * parent, struct rb_node ** rb_link);

删除节点则通过rb_erase进行,然后通过__rb_erase_color进行红黑树的修正。

void rb_erase(struct rb_node *, struct rb_root *);
void __rb_erase_color(struct rb_node *node, struct rb_node *parent, struct rb_root *root);

可以通过调用rb_replace_node来替换一个节点,但是替换完成后并不会对红黑树做任何调整,所以如果新节点的值与被替换的值有所不同时,可能会出现问题。

void rb_replace_node(struct rb_node *old, struct rb_node *new, struct rb_root *tree);

另外有几个进行红黑树遍历的函数,其原理均非常简单,本质上就是这里的求后继、前驱、最小值、最大值的函数实现,不过这里的代码实现非常简洁和巧妙。

extern struct rb_node *rb_next(const struct rb_node *); //后继
extern struct rb_node *rb_prev(const struct rb_node *); //前驱
extern struct rb_node *rb_first(const struct rb_root *);//最小值
extern struct rb_node *rb_last(const struct rb_root *); //最大值

实际使用

Linux内核中的红黑树实现非常巧妙,我们可以在自己的程序中进行使用,不过要稍微进行修改具体的方法如下:

  1. 拷贝rbtree.h和rbtree.c到工程目录下。
  2. 修改rbtree.h:删除两个#include语句,添加stddef.h中的NULL和offsetof宏定义,添加kernel.h中的container_of宏定义。
  3. 修改rbtree.c:把两个#include语句替换成#include "rbtree.h",删除所有删除所有的EXPORT_SYMBOL宏。
  4. 可以开始使用,参考linux-2.6.39.4\Documentation\rbtree.txt文档。

使用内核中的rbtree源码,需要自己实现插入和搜索的关键代码,下面提供一些简单的例子,虽然内容差异很大,但是其基本思想是不变的,可以很容易改成需要的代码。

首先是搜索节点,基本思想就是根据二叉查找树的查找过程进行:

struct mytype *my_search(struct rb_root *root, char *string)
{
struct rb_node *node = root->rb_node;
while (node)
{
struct mytype *data = container_of(node, struct mytype, node);
int result = strcmp(string, data->keystring);
if (result < 0)
node = node->rb_left;
else if (result > 0)
node = node->rb_right;
else
return data;
}
return NULL;
}

然后是插入节点,需要在插入一个数据之前先要查找到适合插入的位置,然后将节点加入到树中并将树调整到平衡状态:

int my_insert(struct rb_root *root, struct mytype *data)
{
struct rb_node **new = &(root->rb_node), *parent = NULL; /* Figure out where to put new node */
while (*new)
{
struct mytype *this = container_of(*new, struct mytype, node);
int result = strcmp(data->keystring, this->keystring); parent = *new;
if (result < 0)
new = &((*new)->rb_left);
else if (result > 0)
new = &((*new)->rb_right);
else
return FALSE;
} /* Add new node and rebalance tree. */
rb_link_node(&data->node, parent, new);
rb_insert_color(&data->node, root); return TRUE;
}

最后是删除节点,可以直接使用内核接口直接进行:

struct mytype *data = mysearch(&mytree, "walrus");
if (data)
{
rb_erase(&data->node, &mytree);
myfree(data);
}

另外如果要遍历一棵红黑树,可以使用内核提供的接口进行,而不需要自己实现:

struct rb_node *node;
for (node = rb_first(&mytree); node; node = rb_next(node))
printk("key=%s\n", rb_entry(node, struct mytype, node)->keystring);

Linux内核红黑树2—移植笔记 2的更多相关文章

  1. 详解Linux内核红黑树算法的实现

    转自:https://blog.csdn.net/npy_lp/article/details/7420689 内核源码:linux-2.6.38.8.tar.bz2 关于二叉查找树的概念请参考博文& ...

  2. 红黑树(三)之 Linux内核中红黑树的经典实现

    概要 前面分别介绍了红黑树的理论知识 以及 通过C语言实现了红黑树.本章继续会红黑树进行介绍,下面将Linux 内核中的红黑树单独移植出来进行测试验证.若读者对红黑树的理论知识不熟悉,建立先学习红黑树 ...

  3. Linux内核设计与实现 读书笔记 转

    Linux内核设计与实现  读书笔记: http://www.cnblogs.com/wang_yb/tag/linux-kernel/ <深入理解LINUX内存管理> http://bl ...

  4. linux 3.4.103 内核移植到 S3C6410 开发板 移植失败 (问题总结,日本再战!)

    linux 3.4.103 内核移植到 S3C6410 开发板 这个星期差点儿就搭在这里面了,一開始感觉非常不值得,移植这样的浪费时间的事情.想立刻搞定,然后安安静静看书 & coding. ...

  5. Linux内核分析第二周学习笔记

    linux内核分析第二周学习笔记 标签(空格分隔): 20135328陈都 陈都 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.co ...

  6. 三十道linux内核面试题

      1. Linux中主要有哪几种内核锁? Linux的同步机制从2.0到2.6以来不断发展完善.从最初的原子操作,到后来的信号量,从大内核锁到今天的自旋锁.这些同步机制的发展伴随Linux从单处理器 ...

  7. LINUX内核面试题摘选

    转载:http://blog.csdn.net/zm1_1zm/article/details/77231197 1) Linux中主要有哪几种内核锁? 答:Linux的同步机制从2.0到2.6以来不 ...

  8. Linux内网渗透

    Linux虽然没有域环境,但是当我们拿到一台Linux 系统权限,难道只进行一下提权,捕获一下敏感信息就结束了吗?显然不只是这样的.本片文章将从拿到一个Linux shell开始,介绍Linux内网渗 ...

  9. Linux Shell脚本攻略 读书笔记

    Linux Shell脚本攻略 读书笔记 这是一本小书,总共253页,但内容却很丰富,书中的示例小巧而实用,对我这样总是在shell门前徘徊的人来说真是如获至宝:最有价值的当属文本处理,对这块我单独整 ...

  10. 卸载Linux内置的AMP软件

    卸载Linux内置的AMP软件 在安装Linux软件的LAMP环境时,必须有一个前提:必须要完全卸载掉系统内置的AMP软件. 1.卸载httpd软件(Apache) 如果在卸载软件时出现依赖关系,我们 ...

随机推荐

  1. tomcat报错:java.io.IOException: No space left on device

    1 简介 今天网站很多页面访问突然就404了,路径分明没有变,是正确的,就很奇怪 排查日志发现报错java.io.IOException: No space left on device 这个错误,是 ...

  2. 举例说明postman接口测试

    接口测试的本质就是接口的数据和数据库里的数据作对比 接口测试,可以理解为测的是后端的程序,而系统测试的时候,测试的是前端的程序,前端只有在满足条件的时候才会调到接口,所以接口测试可以测得更全面更准确 ...

  3. .net core Autofac IOC 容器的简单使用

    书接上回,介绍了.net core 读取配置文件的几种方式,本文学习Autofac的同时再次增加一种读取配置文件的方法. 本文介绍Auofac,一个优秀的.NET IOC框架 源码地址:https:/ ...

  4. 转载:屎人-->诗人系列--码农之歌

    转贴经常关注的一个博主的文,感觉还挺有趣: https://goofegg.github.io/content.html?id=141 ************************** 这个系列第 ...

  5. JZOJ 2020.01.11【NOIP提高组】模拟B组

    2020.01.11[NOIP提高组]模拟B组 今天的题是不是和 \(C\) 组放错了? 呵呵 然,却只有 \(300\) 分 首先,\(T4\) 看错题了 后,一时想不到正解 讨论区,一看,三个字- ...

  6. 题解 [SCOI2007]压缩

    好题. 显然区间 dp,令 \(f_{l, r}\) 为 \([l, r]\) 之间的最短的长度.如果我们要压缩,那么就要考虑 M 与 R 的位置.由于我们大体是从左往右来转移的,所以显然我们只需要记 ...

  7. 跳板攻击之:EarthWorm代理转发

    跳板攻击之:EarthWorm代理转发 目录 跳板攻击之:EarthWorm代理转发 1 EarthWorm官方介绍 2 官方使用方法: 2.1 环境 2.2 正向 SOCKS v5 服务器 2.3 ...

  8. Vulhub 漏洞学习之:Discuz

    Vulhub 漏洞学习之:Discuz 目录 Vulhub 漏洞学习之:Discuz 1 Discuz 7.x/6.x 全局变量防御绕过导致代码执行 1.1 漏洞利用过程 2 Discuz!X ≤3. ...

  9. 基于C++的OpenGL 05 之坐标系统

    1. 引言 本文基于C++语言,描述OpenGL的坐标系统 前置知识可参考: 基于C++的OpenGL 04 之变换 - 当时明月在曾照彩云归 - 博客园 (cnblogs.com) 笔者这里不过多描 ...

  10. PostgreSQL性能优化综合案例 - 1

    [测试模型] 设计一个包含INSERT, UPDATE, SELECT语句的业务模型用于本优化案例. [测试表] create table user_info (userid int, engname ...