论文信息

论文标题:Bootstrapped Representation Learning on Graphs
论文作者:Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Rémi Munos, Petar Veličković, Michal Valko
论文来源:2021, ArXiv
论文地址:download 
论文代码:download

1 介绍

  研究目的:对比学习中不适用负样本。

  本文贡献:

    • 对图比学习不使用负样本

2 方法

2.1 整体框架(节点级对比)

   

    上面是 online network,下面是 target network 。

  步骤:

    • 步骤一:分别应用随机图增强函数 $\mathcal{A}_{1}$ 和 $\mathcal{A}_{2}$,产生 $G$ 的两个视图:$\mathbf{G}_{1}=   \left(\widetilde{\mathbf{X}}_{1}, \widetilde{\mathbf{A}}_{1}\right)$ 和 $\mathbf{G}_{2}=\left(\widetilde{\mathbf{X}}_{2}, \widetilde{\mathbf{A}}_{2}\right) $;
    • 步骤二:在线编码器从其增广图中生成一个在线表示 $\widetilde{\mathbf{H}}_{1}:=\mathcal{E}_{\theta}\left(\widetilde{\mathbf{X}}_{1}, \widetilde{\mathbf{A}}_{1}\right)$;目标编码器从其增广图生成目标表示 $\widetilde{\mathbf{H}}_{2}:=\mathcal{E}_{\phi}\left(\widetilde{\mathbf{X}}_{2}, \widetilde{\mathbf{A}}_{2}\right) $;
    • 步骤三:在线表示被输入到一个预测器 $p_{\theta}$ 中,该预测器  $p_{\theta}$  输出对目标表示的预测  $\widetilde{\mathbf{Z}}_{1}:=   p_{\theta}\left(\widetilde{\mathbf{H}}_{1}, \widetilde{\mathbf{A}}_{1}\right)$,除非另有说明,预测器在节点级别工作,不考虑图信息(仅在 $\widetilde{\mathbf{H}}_{1}$ 上操作,而不是 $\widetilde{\mathbf{A}}_{1}$)。

2.2 BGRL更新步骤

更新 $\theta$

  在线参数 $\theta$(而不是 $\phi$),通过余弦相似度的梯度,使预测的目标表示 $\mathbf{Z}_{1}$ 更接近每个节点的真实目标表示 $\widetilde{\mathbf{H}}_{2}$。

    $\ell(\theta, \phi)=-\frac{2}{N} \sum\limits _{i=0}^{N-1} {\large \frac{\widetilde{\mathbf{Z}}_{(1, i)} \widetilde{\mathbf{H}}_{(2, i)}^{\top}}{\left\|\widetilde{\mathbf{Z}}_{(1, i)}\right\|\left\|\widetilde{\mathbf{H}}_{(2, i)}\right\|}} \quad\quad\quad(1)$

  $\theta$ 的更新公式:

    $\theta \leftarrow \operatorname{optimize}\left(\theta, \eta, \partial_{\theta} \ell(\theta, \phi)\right)\quad\quad\quad(2)$

  其中 $ \eta $ 是学习速率,最终更新仅从目标对 $\theta$ 的梯度计算,使用优化方法如 SGD 或 Adam 等方法。在实践中,

  我们对称了训练,也通过使用第二个视图的在线表示来预测第一个视图的目标表示。

更新 $\phi$

  目标参数 $\phi$ 被更新为在线参数 $\theta$ 的指数移动平均数,即:

    $\phi \leftarrow \tau \phi+(1-\tau) \theta\quad\quad\quad(3)$

  其中 $\tau$ 是控制 $\phi$ 与 $ \theta$ 的距离的衰减速率。

  只有在线参数被更新用来减少这种损失,而目标参数遵循不同的目标函数。根据经验,与BYOL类似,BGRL不会崩溃为平凡解,而 $\ell(\theta, \phi)$ 也不收敛于 $0$ 。

2.3. 完全非对比目标

  对比学习常用的负样本带来的问题是:

    • 如何定义负样本  
    • 随着负样本数量增多,带来的内存瓶颈;

  本文损失函数定义的好处:

    • 不需要对比负对 $\{(i, j) \mid i \neq j\} $ ;
    • 计算方便,只需要保证余弦相似度大就行;

2.4.图增强函数

  本文采用以下两种数据增强方法:

    • 节点特征掩蔽(node feature masking)
    • 边缘掩蔽(edge masking)

3 实验

数据集

  

  数据集划分:

    • WikiCS: 20 canonical train/valid/test splits
    • Amazon Computers, Amazon Photos——train/validation/test—10/10/80%
    • Coauthor CS, Coauthor Physics——train/validation/test—10/10/80%

直推式学习——基线实验

  图编码器采用 $\text{GCN$ Encoder 。

  

大图上的直推式学习——基线实验

  结果:

  

归纳式学习——基线实验

  编码器采用 GraphSAGE-GCN (平均池化)和 GAT 。

  结果:

  

4 结论

  介绍了一种新的自监督图表示学习方法BGRL。通过广泛的实验,我们已经证明了我们的方法与最先进的方法具有竞争力,尽管不需要负例,并且由于不依赖于投影网络或二次节点比较而大大降低了存储需求。此外,我们的方法可以自然地扩展到学习图级嵌入,其中定义消极的例子是具有挑战性的,并且所有的目标不具有规模。

论文解读(BGRL)《Bootstrapped Representation Learning on Graphs》的更多相关文章

  1. 论文解读(MVGRL)Contrastive Multi-View Representation Learning on Graphs

    Paper Information 论文标题:Contrastive Multi-View Representation Learning on Graphs论文作者:Kaveh Hassani .A ...

  2. 论文解读(JKnet)《Representation Learning on Graphs with Jumping Knowledge Networks》

    论文信息 论文标题:Representation Learning on Graphs with Jumping Knowledge Networks论文作者:Keyulu Xu, Chengtao ...

  3. 论文阅读 Dynamic Graph Representation Learning Via Self-Attention Networks

    4 Dynamic Graph Representation Learning Via Self-Attention Networks link:https://arxiv.org/abs/1812. ...

  4. 论文解读《Deep Resdual Learning for Image Recognition》

    总的来说这篇论文提出了ResNet架构,让训练非常深的神经网络(NN)成为了可能. 什么是残差? "残差在数理统计中是指实际观察值与估计值(拟合值)之间的差."如果回归模型正确的话 ...

  5. 论文解读( N2N)《Node Representation Learning in Graph via Node-to-Neighbourhood Mutual Information Maximization》

    论文信息 论文标题:Node Representation Learning in Graph via Node-to-Neighbourhood Mutual Information Maximiz ...

  6. 论文解读(GRCCA)《 Graph Representation Learning via Contrasting Cluster Assignments》

    论文信息 论文标题:Graph Representation Learning via Contrasting Cluster Assignments论文作者:Chun-Yang Zhang, Hon ...

  7. 论文阅读 Inductive Representation Learning on Temporal Graphs

    12 Inductive Representation Learning on Temporal Graphs link:https://arxiv.org/abs/2002.07962 本文提出了时 ...

  8. 论文解读(SUGRL)《Simple Unsupervised Graph Representation Learning》

    Paper Information Title:Simple Unsupervised Graph Representation LearningAuthors: Yujie Mo.Liang Pen ...

  9. 论文解读(AutoSSL)《Automated Self-Supervised Learning for Graphs》

    论文信息 论文标题:Automated Self-Supervised Learning for Graphs论文作者:Wei Jin, Xiaorui Liu, Xiangyu Zhao, Yao ...

随机推荐

  1. 74CMS 3.0 存储型XSS漏洞

    一. 启动环境 1.双击运行桌面phpstudy.exe软件 2.点击启动按钮,启动服务器环境 二.代码审计 1.双击启动桌面Seay源代码审计系统软件 2.因为74CMS3.0源代码编辑使用GBK编 ...

  2. metinfo 6.0 任意文件读取漏洞

    一. 启动环境 1.双击运行桌面phpstudy.exe软件 2.点击启动按钮,启动服务器环境 二.代码审计 1.双击启动桌面Seay源代码审计系统软件 2.点击新建项目按钮,弹出对画框中选择(C:\ ...

  3. python 发送POST请求

    #博客地址:https://blog.csdn.net/qq_36374896 import urllib.request import urllib.parse url = "http:/ ...

  4. 常见的url编码

    URL编码值 字符 %20 空格 %22 " %23 # %25 % %26 &; %28 ( %29 ) %2B + %2C , %2F / %3A : %3B ; %3C < ...

  5. Ajax的核心的对象是什么?

    Ajax的核心对象是XMLXMLHttpRequest 对象. XMLHttpRequest提供不重新加载页面的情况下更新网页,在页面加载后在客户端向服务器请求数据,在页面加载后在服务器端接受数据,在 ...

  6. springboot 配置文件的优先级和互补配置

    一.springboot启动时候,配置文件的优先级如下所示由高到低.高优先级会覆盖低优先级相同配置,并且和低优先级形成互补配置. –file:./config/ ###根目录config目录下 –fi ...

  7. 哪一个List实现了最快插入?

    LinkedList和ArrayList是另个不同变量列表的实现.ArrayList的优势在于动态的增长数组,非常适合初始时总长度未知的情况下使用.LinkedList的优势在于在中间位置插入和删除操 ...

  8. 比较一下 Java 和 JavaSciprt?

    JavaScript 与 Java 是两个公司开发的不同的两个产品.Java 是原 Sun Microsystems 公司推出的面向对象的程序设计语言,特别适合于互联网应用程序 开发:而 JavaSc ...

  9. C++11最常用的新特性如下

    1.auto关键字:编译器可以根据初始值自动推导出类型.但是不能用于函数传参.定义数组以及非静态成员变量. 2.nullptr关键字:是一种特殊类型的字面值,它可以被转换成任意其它类型的指针:而NUL ...

  10. 如何给 Spring 容器提供配置元数据?

    这里有三种重要的方法给 Spring 容器提供配置元数据. XML 配置文件. 基于注解的配置. 基于 java 的配置.