矩阵的相关性质再回顾

对于一个矩阵

  1. 满足结合律
  2. 满足乘法对于加法的分配率
  3. 但是不满足交换律!

对于特殊一点的矩阵来说:

把最左边还有最右面的看成一个数组。。

矩阵加速大法:

因为矩阵满足结合律,所以可以使用快速幂来进行计算。
规律总结:
矩阵加速设计到两个东西:

  • 状态矩阵
  • 转移矩阵
  1. 可以抽象出一个一维向量,在每一次递推就变化一次;
  2. 状态转移方程不发生变化;
  3. 状态转移过程中,一定是线性的(加减,乘以系数)
  4. 注意:状态矩阵需要尽可能短,转移次数可以比较大。

时间复杂度是

N

3

l

o

g

N

N^3logN

N3logN.

ACWing205. 斐波那契



要注意取模

代码

#include <bits/stdc++.h>
using namespace std;
const int len = 2;
const int mod = 10000;
void mulself(int a[2][2])
{
int c[2][2];
memset(c, 0, sizeof(c));
for(int i = 0; i < len; i++ )
for(int j = 0; j < len; j++)
for(int k = 0; k < len; k++)
c[i][j] = (c[i][j]+(long long)a[i][k] * a[k][j])%mod;
memcpy(a, c, sizeof(c));
}
void mul(int a[2][2], int f[2])
{
int c[2];
memset(c, 0, sizeof(c));
for(int j = 0; j < len; j++)
for(int k = 0; k < len; k++)
c[j] = (c[j] + (long long)f[k] * a[k][j])%mod;
memcpy(f, c, sizeof(c));
}
void solve(int n)
{
int a[2][2] = {{0, 1}, {1, 1}};
int f[2] = {0, 1};
for(; n; n >>= 1 )
{
if(n&1) mul(a, f);
mulself(a);
}
printf("%d\n", f[0]);
}
int main()
{
int n;
while((scanf("%d", &n)||1) && n != -1) solve(n);
return 0;
}

ACWing206. 石头游戏


解题思路:

感受:

太恶心了,一百多行代码,debug了一下午

代码


//在这个程序中所有的数组全部从1开始计数
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll n,m,t,act;
char op[20][20];//表示操作
ll oplen[20];
ll mp[70];//表示单元格映射的操作数字
ll matrix[70][70][70];
ll p;//p表示状态矩阵的从 0 到 p;
inline ll num(ll x, ll y)
{
if(x==0 && y==0) return 0;
return (x-1)*m + y;
}
void read_op_and_mp()
{
char buf[12];
for(int i = 1; i <= n; i++)
{
scanf("%s", buf+1);
for(int j = 1; j <= m; j++)
{
mp[num(i, j)] = buf[j]-'0'+1;
}
}
for(int i = 1; i <= act; i++)
{
scanf("%s", op[i]+1);
oplen[i] = strlen(op[i]+1);
}
}
void mulself(ll a[70][70])//
{
ll c[70][70];
memset(c, 0, sizeof(c));
for(int i = 0; i<= p; i++)
for(int j = 0; j <= p; j++)
for(int k = 0; k <= p; k++)
c[i][j] += a[i][k] * a[k][j];
memcpy(a, c, sizeof(c));
}
void mul(ll f[], ll a[70][70])
{
ll c[70];
memset(c, 0, sizeof(c));
for(int j = 0; j <= p; j++)
for(int k = 0; k <= p; k++)
{
c[j] += f[k] * a[k][j];
}
memcpy(f, c, sizeof(c));//sizeof不能是f因为f是指针。
}
void make_matrix()
{
ll tmp[70][70];
for(int i = 0; i <= p; i++) matrix[0][i][i] = 1;//设置为单位矩阵
for(int tt = 1; tt <= 60; tt++)
{
memset(tmp, 0, sizeof(tmp));
tmp[0][0] = 1;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
{
char ch = op[mp[num(i, j)]][(tt-1)%oplen[mp[num(i, j)]]+1];
if('0' <= ch && ch <= '9')
{
tmp[num(0, 0)][num(i, j)] = ch-'0';
tmp[num(i, j)][num(i, j)] = 1;
}
else if(ch=='N')
{
if(i > 1) tmp[num(i, j)][num(i-1, j)] = 1;
}
else if(ch=='W')
{
if(j > 1) tmp[num(i, j)][num(i, j-1)] = 1;
}
else if(ch=='S')
{
if(i < n) tmp[num(i, j)][num(i+1, j)] = 1;
}
else if(ch=='E')
{
if(j < m) tmp[num(i, j)][num(i, j+1)] = 1;
}
}
for(int i = 0; i <= p; i++)
for(int j = 0; j <= p; j++)
for(int k = 0; k <= p; k++)
{
matrix[tt][i][j] += matrix[tt-1][i][k] * tmp[k][j];
}
}
}
ll solve()
{
ll ret = 0;
ll f[70] = {0};
f[0] = 1;
ll a[70][70];
make_matrix();
memcpy(a, matrix[60], sizeof(a));
ll xx = t / 60;
for(; xx; xx >>= 1)
{
if(xx&1) mul(f, a);
mulself(a);
}
mul(f, matrix[t%60]);
for(int i = 1; i <= p; i++) ret = max(ret, f[i]);
return ret;
}
int main()
{
cin >> n >> m >> t >> act;
read_op_and_mp();
p = m * n;
ll ans = solve();
cout << ans << endl;
return 0;
}

算法竞赛进阶指南0x34矩阵乘法的更多相关文章

  1. 算法竞赛进阶指南 0x00 基本算法

    放在原来这个地方不太方便,影响阅读体验.为了读者能更好的刷题,另起一篇随笔. 0x00 基本算法 0x01 位运算 [题目][64位整数乘法] 知识点:快速幂思想的灵活运用 [题目][最短Hamilt ...

  2. 算法竞赛进阶指南--快速幂,求a^b mod p

    // 快速幂,求a^b mod p int power(int a, int b, int p) { int ans = 1; for (; b; b >>= 1) { if (b &am ...

  3. 《算法竞赛进阶指南》0x10 基本数据结构 Hash

    Hash的基本知识 字符串hash算法将字符串看成p进制数字,再将结果mod q例如:abcabcdefg 将字母转换位数字(1231234567)=(1*p9+2*p8+3*p7+1*p6+2*p5 ...

  4. 《算法竞赛进阶指南》1.4Hash

    137. 雪花雪花雪花 有N片雪花,每片雪花由六个角组成,每个角都有长度. 第i片雪花六个角的长度从某个角开始顺时针依次记为ai,1,ai,2,-,ai,6. 因为雪花的形状是封闭的环形,所以从任何一 ...

  5. bzoj 1787 && bzoj 1832: [Ahoi2008]Meet 紧急集合(倍增LCA)算法竞赛进阶指南

    题目描述 原题连接 Y岛风景美丽宜人,气候温和,物产丰富. Y岛上有N个城市(编号\(1,2,-,N\)),有\(N-1\)条城市间的道路连接着它们. 每一条道路都连接某两个城市. 幸运的是,小可可通 ...

  6. POJ1639 算法竞赛进阶指南 野餐规划

    题目描述 原题链接 一群小丑演员,以其出色的柔术表演,可以无限量的钻进同一辆汽车中,而闻名世界. 现在他们想要去公园玩耍,但是他们的经费非常紧缺. 他们将乘车前往公园,为了减少花费,他们决定选择一种合 ...

  7. 算法竞赛进阶指南0x51 线性DP

    AcWing271. 杨老师的照相排列 思路 这是一个计数的题目,如果乱考虑,肯定会毫无头绪,所以我们从1号到最后一个依次进行安排. 经过反复实验,发现两个规律 每一行的同学必须是从左向右依次连续放置 ...

  8. 算法竞赛进阶指南0x35高斯消元与线性空间

    高斯消元 目录 高斯消元 ACWing207. 球形空间产生器(点击访问) 求解思路 代码 ACWing208. 开关问题(点击访问) 思路 代码 总结 欣赏 线性空间 定义 ACWing209. 装 ...

  9. 算法竞赛进阶指南0x14 Hash

    组成部分: 哈希函数: 链表 AcWing137. 雪花雪花雪花 因为所需要数据量过于大,所以只能以O(n)的复杂度. 所以不可能在实现的过程中一一顺时针逆时针进行比较,所以采用一种合适的数据结构. ...

随机推荐

  1. java高级用法之:JNA中的Function

    目录 简介 function的定义 Function的实际应用 总结 简介 在JNA中,为了和native的function进行映射,我们可以有两种mapping方式,第一种是interface ma ...

  2. muduo源码分析之TcpServer模块

    这次我们开始muduo源代码的实际编写,首先我们知道muduo是LT模式,Reactor模式,下图为Reactor模式的流程图[来源1] 然后我们来看下muduo的整体架构[来源1] 首先muduo有 ...

  3. AC自动机:Tire树+KMP

    简介 AC自动机是一个多模式匹配算法,在模式匹配领域被广泛应用,举一个经典的例子,违禁词查找并替换为***.AC自动机其实是Trie树和KMP 算法的结合,首先将多模式串建立一个Tire树,然后结合K ...

  4. kvm 虚拟化技术 1.3之kvm克隆以及快照

    1.kvm虚拟机克隆   克隆kvm虚拟机 ,克隆前需要提前关机     语法: virt-clone -o 原虚拟机  -n 新虚拟机 -f 新虚拟机镜像存放路径    选项中-o 表示 old  ...

  5. C程序设计(谭浩强)第五版课后题答案 第一章

    大家好,这篇文章分享了C程序设计(谭浩强)第五版课后题答案,所有程序已经测试能够正常运行,如果小伙伴发现有错误的的地方,欢迎留言告诉我,我会及时改正!感谢大家的观看!!! 1.什么是程序?什么是程序设 ...

  6. Mathtype无限试用

    PS:本文方法参考网上搜集的内容,仅做记录. 首先,默认大家都已安装Mathtype软件.如果没装的话,安装下就行.建议安装Mathtype国际版软件,因为国产mathtype会延长失败.如果失败的话 ...

  7. CoaXPress 简介

    CoaXPress 背景 CoaXPress (简称CXP)是指一种采用同轴线缆进行互联的相机数据传输标准,主要用于替代之前的cameralink协议,常见于科学相机.工业相机.医学图像.航空防务等场 ...

  8. MongoDB 体系结构与数据模型

    每日一句 If no one else guards the world, then I will come forward. 如果没有别人保卫这个世界,那么我将挺身而出. 概述 MongoDB主要是 ...

  9. Elasticsearch(es)介绍与安装

    ### RabbitMQ从入门到集群架构: https://zhuanlan.zhihu.com/p/375157411 可靠性高 ### Kafka从入门到精通: https://zhuanlan. ...

  10. spring boot 在控制台打印banner

    转自 SpringBoot系列--花里胡哨的banner.txt - huanzi-qch - 博客园 (cnblogs.com) <div id="cnblogs_post_body ...