矩阵的相关性质再回顾

对于一个矩阵

  1. 满足结合律
  2. 满足乘法对于加法的分配率
  3. 但是不满足交换律!

对于特殊一点的矩阵来说:

把最左边还有最右面的看成一个数组。。

矩阵加速大法:

因为矩阵满足结合律,所以可以使用快速幂来进行计算。
规律总结:
矩阵加速设计到两个东西:

  • 状态矩阵
  • 转移矩阵
  1. 可以抽象出一个一维向量,在每一次递推就变化一次;
  2. 状态转移方程不发生变化;
  3. 状态转移过程中,一定是线性的(加减,乘以系数)
  4. 注意:状态矩阵需要尽可能短,转移次数可以比较大。

时间复杂度是

N

3

l

o

g

N

N^3logN

N3logN.

ACWing205. 斐波那契



要注意取模

代码

#include <bits/stdc++.h>
using namespace std;
const int len = 2;
const int mod = 10000;
void mulself(int a[2][2])
{
int c[2][2];
memset(c, 0, sizeof(c));
for(int i = 0; i < len; i++ )
for(int j = 0; j < len; j++)
for(int k = 0; k < len; k++)
c[i][j] = (c[i][j]+(long long)a[i][k] * a[k][j])%mod;
memcpy(a, c, sizeof(c));
}
void mul(int a[2][2], int f[2])
{
int c[2];
memset(c, 0, sizeof(c));
for(int j = 0; j < len; j++)
for(int k = 0; k < len; k++)
c[j] = (c[j] + (long long)f[k] * a[k][j])%mod;
memcpy(f, c, sizeof(c));
}
void solve(int n)
{
int a[2][2] = {{0, 1}, {1, 1}};
int f[2] = {0, 1};
for(; n; n >>= 1 )
{
if(n&1) mul(a, f);
mulself(a);
}
printf("%d\n", f[0]);
}
int main()
{
int n;
while((scanf("%d", &n)||1) && n != -1) solve(n);
return 0;
}

ACWing206. 石头游戏


解题思路:

感受:

太恶心了,一百多行代码,debug了一下午

代码


//在这个程序中所有的数组全部从1开始计数
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll n,m,t,act;
char op[20][20];//表示操作
ll oplen[20];
ll mp[70];//表示单元格映射的操作数字
ll matrix[70][70][70];
ll p;//p表示状态矩阵的从 0 到 p;
inline ll num(ll x, ll y)
{
if(x==0 && y==0) return 0;
return (x-1)*m + y;
}
void read_op_and_mp()
{
char buf[12];
for(int i = 1; i <= n; i++)
{
scanf("%s", buf+1);
for(int j = 1; j <= m; j++)
{
mp[num(i, j)] = buf[j]-'0'+1;
}
}
for(int i = 1; i <= act; i++)
{
scanf("%s", op[i]+1);
oplen[i] = strlen(op[i]+1);
}
}
void mulself(ll a[70][70])//
{
ll c[70][70];
memset(c, 0, sizeof(c));
for(int i = 0; i<= p; i++)
for(int j = 0; j <= p; j++)
for(int k = 0; k <= p; k++)
c[i][j] += a[i][k] * a[k][j];
memcpy(a, c, sizeof(c));
}
void mul(ll f[], ll a[70][70])
{
ll c[70];
memset(c, 0, sizeof(c));
for(int j = 0; j <= p; j++)
for(int k = 0; k <= p; k++)
{
c[j] += f[k] * a[k][j];
}
memcpy(f, c, sizeof(c));//sizeof不能是f因为f是指针。
}
void make_matrix()
{
ll tmp[70][70];
for(int i = 0; i <= p; i++) matrix[0][i][i] = 1;//设置为单位矩阵
for(int tt = 1; tt <= 60; tt++)
{
memset(tmp, 0, sizeof(tmp));
tmp[0][0] = 1;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
{
char ch = op[mp[num(i, j)]][(tt-1)%oplen[mp[num(i, j)]]+1];
if('0' <= ch && ch <= '9')
{
tmp[num(0, 0)][num(i, j)] = ch-'0';
tmp[num(i, j)][num(i, j)] = 1;
}
else if(ch=='N')
{
if(i > 1) tmp[num(i, j)][num(i-1, j)] = 1;
}
else if(ch=='W')
{
if(j > 1) tmp[num(i, j)][num(i, j-1)] = 1;
}
else if(ch=='S')
{
if(i < n) tmp[num(i, j)][num(i+1, j)] = 1;
}
else if(ch=='E')
{
if(j < m) tmp[num(i, j)][num(i, j+1)] = 1;
}
}
for(int i = 0; i <= p; i++)
for(int j = 0; j <= p; j++)
for(int k = 0; k <= p; k++)
{
matrix[tt][i][j] += matrix[tt-1][i][k] * tmp[k][j];
}
}
}
ll solve()
{
ll ret = 0;
ll f[70] = {0};
f[0] = 1;
ll a[70][70];
make_matrix();
memcpy(a, matrix[60], sizeof(a));
ll xx = t / 60;
for(; xx; xx >>= 1)
{
if(xx&1) mul(f, a);
mulself(a);
}
mul(f, matrix[t%60]);
for(int i = 1; i <= p; i++) ret = max(ret, f[i]);
return ret;
}
int main()
{
cin >> n >> m >> t >> act;
read_op_and_mp();
p = m * n;
ll ans = solve();
cout << ans << endl;
return 0;
}

算法竞赛进阶指南0x34矩阵乘法的更多相关文章

  1. 算法竞赛进阶指南 0x00 基本算法

    放在原来这个地方不太方便,影响阅读体验.为了读者能更好的刷题,另起一篇随笔. 0x00 基本算法 0x01 位运算 [题目][64位整数乘法] 知识点:快速幂思想的灵活运用 [题目][最短Hamilt ...

  2. 算法竞赛进阶指南--快速幂,求a^b mod p

    // 快速幂,求a^b mod p int power(int a, int b, int p) { int ans = 1; for (; b; b >>= 1) { if (b &am ...

  3. 《算法竞赛进阶指南》0x10 基本数据结构 Hash

    Hash的基本知识 字符串hash算法将字符串看成p进制数字,再将结果mod q例如:abcabcdefg 将字母转换位数字(1231234567)=(1*p9+2*p8+3*p7+1*p6+2*p5 ...

  4. 《算法竞赛进阶指南》1.4Hash

    137. 雪花雪花雪花 有N片雪花,每片雪花由六个角组成,每个角都有长度. 第i片雪花六个角的长度从某个角开始顺时针依次记为ai,1,ai,2,-,ai,6. 因为雪花的形状是封闭的环形,所以从任何一 ...

  5. bzoj 1787 && bzoj 1832: [Ahoi2008]Meet 紧急集合(倍增LCA)算法竞赛进阶指南

    题目描述 原题连接 Y岛风景美丽宜人,气候温和,物产丰富. Y岛上有N个城市(编号\(1,2,-,N\)),有\(N-1\)条城市间的道路连接着它们. 每一条道路都连接某两个城市. 幸运的是,小可可通 ...

  6. POJ1639 算法竞赛进阶指南 野餐规划

    题目描述 原题链接 一群小丑演员,以其出色的柔术表演,可以无限量的钻进同一辆汽车中,而闻名世界. 现在他们想要去公园玩耍,但是他们的经费非常紧缺. 他们将乘车前往公园,为了减少花费,他们决定选择一种合 ...

  7. 算法竞赛进阶指南0x51 线性DP

    AcWing271. 杨老师的照相排列 思路 这是一个计数的题目,如果乱考虑,肯定会毫无头绪,所以我们从1号到最后一个依次进行安排. 经过反复实验,发现两个规律 每一行的同学必须是从左向右依次连续放置 ...

  8. 算法竞赛进阶指南0x35高斯消元与线性空间

    高斯消元 目录 高斯消元 ACWing207. 球形空间产生器(点击访问) 求解思路 代码 ACWing208. 开关问题(点击访问) 思路 代码 总结 欣赏 线性空间 定义 ACWing209. 装 ...

  9. 算法竞赛进阶指南0x14 Hash

    组成部分: 哈希函数: 链表 AcWing137. 雪花雪花雪花 因为所需要数据量过于大,所以只能以O(n)的复杂度. 所以不可能在实现的过程中一一顺时针逆时针进行比较,所以采用一种合适的数据结构. ...

随机推荐

  1. 数据库界的Swagger:一键生成数据库文档!

    对于开发的API文档,我们可以通过Swagger等工具来自动生成了.但是对于数据库表结构的文档呢,在实际开发中在开发前我们一般会先设计好表结构,大家讨论一下, 这个时候就很需要有个数据库表结构的文档, ...

  2. 从防御者视角来看APT攻击

    前言 APT防御的重要性毋庸讳言,为了帮助各位师傅在防御方面建立一个总体认识,本文会将APT防御方法分为三类,分别是:监控.检测和缓解技术,并分别进行梳理,介绍分析代表性技术.这一篇分析现有的监控技术 ...

  3. Spring Cloud Alibaba入门篇

    学习条件 了解web三层架构 熟练应用SSM架构 了解Maven管理工具的使用 熟练使用SpringBoot,以及了解SpringBoot基本原理. 了解部分术语:应用.工具.耦合.负载等 温馨提示: ...

  4. EF Core 的关联查询

    0 前言 本文会列举出 EF Core 关联查询的方法: 在第一.二.三节中,介绍的是 EF Core 的基本能力,在实体中配置好关系,即可使用,且其使用方式,与编程思维吻合,是本文推荐的方式. 第四 ...

  5. ubuntu helpers

    linux 命令大全 Apt proxy configuration on Ubuntu 20.04 Focal Fossa Linux 临时使用socks代理apt-get的方法 docker - ...

  6. CF1682F MCMF?

    题意: 费用流,其实bushi 给你长为\(n\)的序列\(a\),\(b\).\(a\)单增,\(b\)有正有负. \(q\)次询问\([l,r]\),保证\(\sum\limits_{i=l}^r ...

  7. Flask 之 高可用IP代理网站

    高可用代理IP网站 目标:提供高可用代理IP 步骤一:通过爬虫获取代理IP 步骤二:对代理IP进行检测,判断代理是否可用 步骤三:将可用的代理IP写入mongodb数据库 步骤四:创建网站,从数据库获 ...

  8. docker-compose 搭建 Prometheus+Grafana监控系统

    有关监控选型之前有写过一篇文章: 监控系统选型,一文轻松搞定! 监控对象 Linux服务器 Docker Redis MySQL 数据采集 1).prometheus: 采集数据 2).node-ex ...

  9. easyui combobox重复渲染问题

    当一个页面有两个easyui combobox存在时,并且同时给两个combobox赋相同值,某些easyui的版本会导致其中一个无法切换选项. 解决办法,分两步赋值,可解决问题

  10. DNS原理&ssh

    作用:实现域名的解析! www.baidu.com => 14.215.177.37 域名: www.baidu.com 实际域名为: www.baidu.com. 域名的解析,是反向的. 最后 ...