初识MapReduce

一、什么是MapReduce

MapReduce是一种编程范式,它借助Map将一个大任务分解成多个小任务,再借助Reduce归并Map的结果。MapReduce虽然原理很简单,但是使用MapReduce设计出一个解决问题的应用却不是一件简单的事情。下面通过一个简单的小例子来介绍MapReduce。

二、使用MapReduce寻找销售人员业绩最大值

《Hadoop权威指南》的例子是寻找天气最大值,需要去下载数据。但是我们并不需要完全复刻他的场景,所以这里用了另外一个例子。假设有一批销售日志数据文件,它的一部分是这样的。

66$2021-01-01$5555
67$2021-01-01$5635

每一行代表某一位销售人员某个日期的销售数量,具体格式为

销售用户id$统计日期$销售数量

我们需要寻找每一个销售用户的销售最大值是多少。需要说明的是,这里仅仅是举一个很简单的示例,便于学习MapReduce。

1、数据解析器

我首先写了一个解析器来识别每一行的文本,它的作用是将每一行文本转换为数据实体,数据实体这里偷了个懒,字段全部设置成了public。代码片段如下:

/**
* 销售数据解释器
* 销售数据格式为
* userId$countDate(yyyy-MM-dd)$saleCount
*/
public class SaleDataParse implements TextParse<SaleDataEntity> { @Override
public SaleDataEntity parse(String text) {
if (text == null) {
return null;
}
text = text.trim();
if (text.isEmpty()) {
return null;
} SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd");
String[] split = text.split("\\$");
SaleDataEntity data = new SaleDataEntity();
data.userId = Long.valueOf(split[0]);
data.countDate = sdf.parse(split[1], new ParsePosition(0));
data.saleCount = Integer.valueOf(split[2]);
return data;
}
} /**
* 销售数据实体
*/
public class SaleDataEntity {
/**
* 销售用户id
*/
public Long userId;
/**
* 销售日期
*/
public Date countDate;
/**
* 销售总数
*/
public Integer saleCount;
}

2、Map函数

Mapper是一个泛型类,它需要4个泛型参数,从左到右分别是输入键、输入值、输出键和输出值。也就是这样

Mapper<输入键, 输入值, 输出键, 输出值>

其中输入键和输入值的格式是由InputFormatClass决定的,关于输入格式的讨论之后会展开讨论。MapReduce默认会把文件按行拆分,然后偏移量(输入键)->行文本(输入值)的映射传递给Mapper的map方法。输出键和输出值则由用户进行指定。

这里由于是找每一个用户的最大销售数量,Mapper的功能是接收并解析每行数据。所以输出键我设成了销售人员id->销售数量的映射。所以实际的Mapper实现看起来像这样:

/**
* 解析输入的文本数据
*/
public class MaxSaleMapper extends Mapper<LongWritable, Text, LongWritable, IntWritable> {
protected TextParse<SaleDataEntity> saleDataParse = new SaleDataParse(); @Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String s = value.toString();
SaleDataEntity data = saleDataParse.parse(s);
if (data != null) {
//写入输出给Reducer
context.write(new LongWritable(data.userId), new IntWritable(data.saleCount));
}
}
}

其中LongWritable相当于java里的long,Text相当于java里的String,IntWritable相当于java里的int。

这里你可能会想到,既然已经解析成了数据实体,为什么不直接把实体设置成输出值?因为map函数和reduce函数不一定运行在同一个进程里,所以会涉及到序列化和反序列化,这里先不展开。

3、Reduce函数

Reducer也是一个泛型类,它也需要4个参数,从左到右分别是输入键、输入值、输出键和输出值。也就是这样

Reducer<输入键, 输入值, 输出键, 输出值>

与Mapper不同的是,输入键和输入值来源于Mapper的输出,也就是Mapper实现中的context.write()。

输出键和输出值也是由用户指定,默认的输出会写到文件中,关于Reducer的输出以后会讨论。

Reducer的功能是寻找每个用户的最大值,所以Reducer的实现看起来像这样:

/**
* 查找每一个用户的最大销售值
*/
public class MaxSaleReducer extends Reducer<LongWritable, IntWritable, LongWritable, IntWritable> {
@Override
protected void reduce(LongWritable key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int max = 0;
for (IntWritable value : values) {
if (value.get() > max) {
max = value.get();
}
}
context.write(key, new IntWritable(max));
}
}

你可能会奇怪,为什么reduce方法的第二个参数是一个迭代器。简单来说,Mapper会把映射的值进行归并,然后再传递给Reducer。

4、驱动程序

我们已经完成了map和reduce函数的实现,现在我们需要把它们组装起来。我们需要写一个Main类,它看起来像这样

public class MaxSale {

    public static void main(String[] args) throws Exception {
Job job = Job.getInstance();
job.setJarByClass(MaxSale.class);
job.setJobName("MaxSale"); FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1])); job.setMapperClass(MaxSaleMapper.class);
job.setMapOutputKeyClass(LongWritable.class);
job.setMapOutputValueClass(IntWritable.class); job.setReducerClass(MaxSaleReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
//设置Reduce任务数
job.setNumReduceTasks(1); System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}

这里解释一下

  • 首先我们创建了一个Job
  • 然后设置输入目录和输出目录,它们分别是FileInputFormat.addInputPath和FileOutputFormat.setOutputPath
  • 使用setMapperClass设置了map函数,setMapOutputKeyClass设置了map函数的输入键类型,setMapOutputValueClass设置了输出键类型
  • 使用setReducerClass设置了reduce函数,setOutputKeyClass设置了输出键类型,setOutputValueClass设置了输出值类型
  • 然后使用setNumReduceTasks设置reduce任务个数为1,每个reduce任务都会输出一个文件,这里是为了方便查看
  • 最后job.waitForCompletion(true)启动并等待任务结束

5、运行结果

使用maven package打包,会生成一个jar,我生成的名字是maxSaleMapReduce-1.0-SNAPSHOT.jar。如果打包的jar有除了Hadoop的其他依赖,需要设置一下HADOOP_CLASSPATH,然后把依赖放到HADOOP_CLASSPATH目录中。

最后输入启动命令,格式为:hadoop jar 生成的jar.jar 输入数据目录 输出数据目录。这里给出我使用的命令示例:

Windows:
set HADOOP_CLASSPATH=C:\xxxxxxxxx\lib\*
hadoop jar maxSaleMapReduce-1.0-SNAPSHOT.jar input output

然后你会看到程序有如下输出,这里截取的部分:

23/01/18 12:10:29 INFO mapred.MapTask: Starting flush of map output
23/01/18 12:10:29 INFO mapred.MapTask: Spilling map output
23/01/18 12:10:29 INFO mapred.MapTask: bufstart = 0; bufend = 17677320; bufvoid = 104857600
23/01/18 12:10:29 INFO mapred.MapTask: kvstart = 26214396(104857584); kvend = 20321960(81287840); length = 5892437/6553600
23/01/18 12:10:30 INFO mapred.MapTask: Finished spill 0
23/01/18 12:10:30 INFO mapred.Task: Task:attempt_local1909247000_0001_m_000000_0 is done. And is in the process of committing
23/01/18 12:10:30 INFO mapred.LocalJobRunner: map
23/01/18 12:10:30 INFO mapred.Task: Task 'attempt_local1909247000_0001_m_000000_0' done.
23/01/18 12:10:30 INFO mapred.Task: Final Counters for attempt_local1909247000_0001_m_000000_0: Counters: 17
File System Counters
FILE: Number of bytes read=33569210
FILE: Number of bytes written=21132276
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
Map-Reduce Framework
Map input records=1473110
Map output records=1473110
Map output bytes=17677320
Map output materialized bytes=20623546
Input split bytes=122
Combine input records=0
Spilled Records=1473110
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=36
Total committed heap usage (bytes)=268435456
File Input Format Counters
Bytes Read=33558528
23/01/18 12:10:30 INFO mapred.LocalJobRunner: Finishing task: attempt_local1909247000_0001_m_000000_0
23/01/18 12:10:30 INFO mapred.LocalJobRunner: Starting task: attempt_local1909247000_0001_m_000001_0
23/01/18 12:10:30 INFO output.FileOutputCommitter: File Output Committer Algorithm version is 1
23/01/18 12:10:30 INFO output.FileOutputCommitter: FileOutputCommitter skip cleanup _temporary folders under output directory:false, ignore cleanup failures: false

等待程序执行结束,output文件夹会有输出part-r-00000,文件里每一行是每一个用户的id和他销售最大值。

0	9994
1 9975
2 9987
3 9985
4 9978
5 9998

三、MapReduce执行流程

简单分析一下这个示例程度的执行流程:

  1. 首先输入文件被按行切分,输入到各个maper
  2. maper的输出按输出键进行分类,经过shuffle操作后输入到reducer
  3. reducer收到maper的输出后,执行寻找最大值操作,然后输出
  4. 输出会被默认的输出格式格式化后输出到文件part-r-00000

四、示例代码说明

本文所有的代码放在我的github上,地址是:https://github.com/xunpengliu/hello-hadoop

下面是项目目录说明:

  • maxSaleMapReduce模块是Map函数和Reduce的实现,这个模块依赖common模块。所以运行的时候需要把common模块生成的jar添加到HADOOP_CLASSPATH中
  • common模块是公共模块,里面有一个SaleDataGenerator的数据生成器,可以生成本次示例代码使用的生成数据

最后需要说明的是,项目代码主要用于学习,代码风格并非代表本人实际风格,不完善之处请轻喷。

五、常见问题

  1. java.lang.RuntimeException: java.io.FileNotFoundException: Could not locate Hadoop executable: xxxxxxxxxxxx\bin\winutils.exe -see https://wiki.apache.org/hadoop/WindowsProblems

    这个是因为没有下载winutils.exe和hadoop.dll,具体可以参考《安装一个最小化的Hadoop》中windows额外说明

  2. 运行出现异常java.lang.NullPointerException

    at java.lang.ProcessBuilder.start(ProcessBuilder.java:1012)

    at org.apache.hadoop.util.Shell.runCommand(Shell.java:482)

    at org.apache.hadoop.util.Shell.run(Shell.java:455)

    at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:702)

    ​ ......

    这个和问题1类似,Hadoop在Windows需要winutils.exe和hadoop.dll访问文件,这两个文件通过org.apache.hadoop.util.Shell#getQualifiedBinPath这个方法获取,而这个方法又依赖Hadoop的安装目录。

    设置HADOOP_HOME环境变量,或者传入系统参数hadoop.home.dir为Hadoop程序目录,具体参见《安装一个最小化的Hadoop》

03初识MapReduce的更多相关文章

  1. Hadoop学习笔记—4.初识MapReduce

    一.神马是高大上的MapReduce MapReduce是Google的一项重要技术,它首先是一个编程模型,用以进行大数据量的计算.对于大数据量的计算,通常采用的处理手法就是并行计算.但对许多开发者来 ...

  2. 初识MapReduce

    MapReduce是Google的一项重要技术,它首先是一个编程模型,用以进行大数据量的计算.对于大数据量的计算,通常采用的处理手法就是并行计算.但对许多开发者来说,自己完完全全实现一个并行计算程序难 ...

  3. Hadoop点滴-初识MapReduce(2)

    术语: job(作业):客户端需要执行的一个工作单元,包括输入数据.MP程序.配置信息 Hadoop将job分成若干task(任务)来执行,其中包括两类任务:map任务.reduce任务.这些任务在集 ...

  4. Linux学习笔记03—初识Linux

    命令介绍 忘记root密码的处理方法 系统安装盘的救援模式的使用 一.命令介绍 1.LS命令 ls 查看当前目录下的文件 Ls –l 等同于ll 查看目录的详细信息 Ls –a 查看当前目录下的所有文 ...

  5. Hadoop点滴-初识MapReduce(1)

    分析气候数据,计算出每年全球最高气温(P25页) Map阶段:输入碎片数据,输出一系列“单键单值”键值对 内部处理,将一系列“单键单值”键值对转化成一系列“单键多值”键值对 Reduce阶段,输入“单 ...

  6. 前端知识(一)03 初识 ECMAScript 6-谷粒学院

    目录 一.ECMAScript 6 1.什么是 ECMAScript 6 2.ECMAScript 和 JavaScript 的关系 二.基本语法 1.let声明变量 2.const声明常量(只读变量 ...

  7. 对于Hadoop的MapReduce编程makefile

    根据近期需要hadoop的MapReduce程序集成到一个大的应用C/C++书面框架.在需求make当自己主动MapReduce编译和打包的应用. 在这里,一个简单的WordCount1一个例子详细的 ...

  8. 指导手册05:MapReduce编程入门

    指导手册05:MapReduce编程入门   Part 1:使用Eclipse创建MapReduce工程 操作系统: Centos 6.8, hadoop 2.6.4 情景描述: 因为Hadoop本身 ...

  9. 如何在maven项目里面编写mapreduce程序以及一个maven项目里面管理多个mapreduce程序

    我们平时创建普通的mapreduce项目,在遍代码当你需要导包使用一些工具类的时候, 你需要自己找到对应的架包,再导进项目里面其实这样做非常不方便,我建议我们还是用maven项目来得方便多了 话不多说 ...

  10. Hadoop Mapreduce 参数 (一)

    参考 hadoop权威指南 第六章,6.4节 背景 hadoop,mapreduce就如MVC,spring一样现在已经是烂大街了,虽然用过,但是说看过源码么,没有,调过参数么?调过,调到刚好能跑起来 ...

随机推荐

  1. 【第1篇】人工智能(AI)语音测试原理和实践---宣传

    ​前言 本文主要介绍作者关于人工智能(AI)语音测试的各方面知识点和实战技术. 本书共分为9章,第1.2章详细介绍人工智能(AI)语音测试各种知识点和人工智能(AI)语音交互原理:第3.4章介绍人工智 ...

  2. 一篇文章带你了解轻量级Web服务器——Nginx简单入门

    一篇文章带你了解轻量级Web服务器--Nginx简单入门 Nginx是一款轻量级的Web服务器/反向代理服务器及电子邮件代理服务器 在本篇中我们会简单介绍Nginx的特点,安装,相关指令使用以及配置信 ...

  3. raid 5搭建部署

    raid 5搭建部署 软raid与备份 1.用四块磁盘做实验,三块盘搭建raid阵列组,有一块当作备份可以使用raid 5来搭建三块磁盘的阵列组 创建命令如下: [root@xiaohaoge ~]# ...

  4. k8s之pod连接被拒排查

    k8s之pod连接被拒排查 pod链接被拒 查看pod的时候发现pod的状态为crashloopbackoff 然后看看日志发现报错如下 kubectl -n kf10 logs easydata-r ...

  5. Atcoder beginner contest 249 C-Just K(二进制枚举)

    题目大意:给你N个字符串,你可以从中选择任意数量的字符串,请统计在你的字串中,相同字母出现次数正好为K次的字母数.数据保证出现的字母都是小写字母. 1≤N≤15 1 ≤K≤N 一开始读题的时候读错了, ...

  6. 正则表达式之前戏、字符组、量词、特殊符号、贪婪与非贪婪匹配等,python正则模块之re

    目录 正则表达式前戏 正则表达式之字符组 正则表达式之特殊符号 正则表达式之量词 贪婪匹配与非贪婪匹配 转义符 正则表达式实战建议 re模块 re模块补充说明 作业 正则表达式前戏 案例:京东注册手机 ...

  7. 【每日一题】【上右下左模拟&while循环体条件不满足时】54.螺旋矩阵-211110/220204

    给你一个 m 行 n 列的矩阵 matrix ,请按照 顺时针螺旋顺序 ,返回矩阵中的所有元素. 解答:while循环内部不满足也会继续走到结尾 import java.util.ArrayList; ...

  8. 【每日一题】【哈希表,返回结果的下标】2022年1月18日-NC61 两数之和

    描述给出一个整型数组 numbers 和一个目标值 target,请在数组中找出两个加起来等于目标值的数的下标,返回的下标按升序排列.(注:返回的数组下标从1开始算起) 算法: import java ...

  9. 【每日一题】【队列的实现类】【每层元素个数】2022年1月11日-NC15 求二叉树的层序遍历

    描述给定一个二叉树,返回该二叉树层序遍历的结果,(从左到右,一层一层地遍历)例如:给定的二叉树是{3,9,20,#,#,15,7}, 注意:每一层上元素的个数 解答: import java.util ...

  10. 【JVM调优】Day01:Garbage的概念、垃圾回收的算法(标记清除、拷贝、标记压缩)、各种垃圾回收器(Serial、Parallel、CMS并发)及存在的问题

    〇.前言 简历写上:熟悉GC常用算法,熟悉常见垃圾回收器.具有实际JVM调优实战经验 瞬间涨3k 一.什么是garbage Java中垃圾回收器自动进行垃圾回收,不用自己回收 new 对象在内存中,c ...