使用Ceres求解非线性优化问题,一共分为三个部分:

1、 第一部分:构建cost fuction,即代价函数,也就是寻优的目标式。这个部分需要使用仿函数(functor)这一技巧来实现,做法是定义一个cost function的结构体,在结构体内重载()运算符。

2、 第二部分:通过代价函数构建待求解的优化问题。

3、 第三部分:配置求解器参数并求解问题,这个步骤就是设置方程怎么求解、求解过程是否输出等,然后调用一下Solve方法

#include <iostream>
#include <opencv2/core/core.hpp>
#include <ceres/ceres.h>
#include <chrono> using namespace std; // 代价函数的计算模型
struct CURVE_FITTING_COST {
CURVE_FITTING_COST(double x, double y) : _x(x), _y(y) {} // 残差的计算
template<typename T>
bool operator()(
const T *const abc, // 模型参数,待优化的参数,有3维
T *residual) const {
residual[0] = T(_y) - ceres::exp(abc[0] * T(_x) * T(_x) + abc[1] * T(_x) + abc[2]); // y-exp(ax^2+bx+c) //残差,也就是代价函数的输出
return true;
} const double _x, _y; // x,y数据
}; int main(int argc, char **argv) {
double ar = 1.0, br = 2.0, cr = 1.0; // 真实参数值
double ae = 2.0, be = -1.0, ce = 5.0; // 估计参数值
int N = 100; // 数据点
double w_sigma = 1.0; // 噪声Sigma值
double inv_sigma = 1.0 / w_sigma;
cv::RNG rng; // OpenCV随机数产生器 vector<double> x_data, y_data; // 数据
for (int i = 0; i < N; i++) {
double x = i / 100.0;
x_data.push_back(x);
y_data.push_back(exp(ar * x * x + br * x + cr) + rng.gaussian(w_sigma * w_sigma));
} double abc[3] = {ae, be, ce}; // 构建最小二乘问题
ceres::Problem problem;
for (int i = 0; i < N; i++) {
problem.AddResidualBlock( // 向问题中添加误差项
// 使用自动求导,将定义的代价函数结构体传入。模板参数:误差类型,输出维度即残差的维度,输入维度即优化参数的维度,维数要与前面struct中一致
new ceres::AutoDiffCostFunction<CURVE_FITTING_COST, 1, 3>(
new CURVE_FITTING_COST(x_data[i], y_data[i])
),
nullptr, // 核函数,这里不使用,为空
abc // 待估计参数
);
} // 配置求解器
ceres::Solver::Options options; // 这里有很多配置项可以填
options.linear_solver_type = ceres::DENSE_NORMAL_CHOLESKY; // 增量方程如何求解
//options.linear_solver_type = ceres::DENSE_QR;
options.minimizer_progress_to_stdout = true; // 输出到cout ceres::Solver::Summary summary; // 优化信息
chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
ceres::Solve(options, &problem, &summary); // 开始优化,求解
chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
cout << "solve time cost = " << time_used.count() << " seconds. " << endl; // 输出结果
cout << summary.BriefReport() << endl; //输出优化的简要信息
cout << "estimated a,b,c = ";
for (auto a:abc) cout << a << " ";
cout << endl; return 0;
}

cmakelists.txt:

cmake_minimum_required(VERSION 2.8)
project(gaussnewton)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11")
find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})
find_package(Ceres REQUIRED)
include_directories(${CERES_INCLUDE_DIRS})
include_directories("/usr/include/eigen3")
set(SOURCE_FILES main.cpp)
add_executable(gaussnewton ${SOURCE_FILES})
target_link_libraries(gaussnewton ${OpenCV_LIBS})
target_link_libraries(gaussnewton ${CERES_LIBRARIES})

视觉十四讲:第六讲_ceres非线性优化的更多相关文章

  1. ros系统21讲—前六讲

    课程介绍(第一讲) linux介绍安装(第二讲) linux的基础操作(第三讲) ROS中语言c++与python介绍(第四讲) 安装ROS系统(第五讲) 第一个: sudo sh -c echo d ...

  2. 高翔《视觉SLAM十四讲》从理论到实践

    目录 第1讲 前言:本书讲什么:如何使用本书: 第2讲 初始SLAM:引子-小萝卜的例子:经典视觉SLAM框架:SLAM问题的数学表述:实践-编程基础: 第3讲 三维空间刚体运动 旋转矩阵:实践-Ei ...

  3. 视觉slam学习之路(一)看高翔十四讲所遇到的问题

      目前实验室做机器人,主要分三个方向,定位导航,建图,图像识别,之前做的也是做了下Qt上位机,后面又弄红外识别,因为这学期上课也没怎么花时间在项目,然后导师让我们确定一个方向来,便于以后发论文什么. ...

  4. 浅读《视觉SLAM十四讲:从理论到实践》--操作1--初识SLAM

    下载<视觉SLAM十四讲:从理论到实践>源码:https://github.com/gaoxiang12/slambook 第二讲:初识SLAM 2.4.2 Hello SLAM(书本P2 ...

  5. 第三百六十四节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)的mapping映射管理

    第三百六十四节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)的mapping映射管理 1.映射(mapping)介绍 映射:创建索引的时候,可以预先定义字 ...

  6. 高博-《视觉SLAM十四讲》

    0 讲座 (1)SLAM定义 对比雷达传感器和视觉传感器的优缺点(主要介绍视觉SLAM) 单目:不知道尺度信息 双目:知道尺度信息,但测量范围根据预定的基线相关 RGBD:知道深度信息,但是深度信息对 ...

  7. 《视觉SLAM十四讲》第2讲

    目录 一 视觉SLAM中的传感器 二 经典视觉SLAM框架 三 SLAM问题的数学表述 注:原创不易,转载请务必注明原作者和出处,感谢支持! 本讲主要内容: (1) 视觉SLAM中的传感器 (2) 经 ...

  8. 《视觉SLAM十四讲》第1讲

    目录 一 视觉SLAM 注:原创不易,转载请务必注明原作者和出处,感谢支持! 一 视觉SLAM 什么是视觉SLAM? SLAM是Simultaneous Localization and Mappin ...

  9. 视觉slam十四讲第七章课后习题6

    版权声明:本文为博主原创文章,转载请注明出处: http://www.cnblogs.com/newneul/p/8545450.html 6.在PnP优化中,将第一个相机的观测也考虑进来,程序应如何 ...

  10. 视觉slam十四讲第七章课后习题7

    版权声明:本文为博主原创文章,转载请注明出处:http://www.cnblogs.com/newneul/p/8544369.html  7.题目要求:在ICP程序中,将空间点也作为优化变量考虑进来 ...

随机推荐

  1. jquery 中的 $(“#”) 与 js中的document.getElementById(“”) 的区别

    以前没注意过,认为jquery 中的 $("#") 与 document.getElementById("") 是一回事,指的是同一个东西. 这次项目开发在使用 ...

  2. PHP 0817

    原题链接:http://www.wechall.net/challenge/php0817/index.php 点看题目 意思是他有一个php写的系统,但是他很容易收到LFI的影响,然后我们的任务就是 ...

  3. 【重难点整理】通过kafka的全过程叙述kafka的原理、特性及常见问题

    一.kafka的实现原理 1.逻辑结构 2.组成 生产者:生产消息,来自服务.客户端.端口-- 消息本身:消息主体 topic主题:对消息的分类,例如数仓不同层中的不同类型数据(订单.用户--):自带 ...

  4. ORM数据增删改查 django请求生命周期 django路由层 反向解析

    目录 可视化界面之数据增删改查 补充 1.建表 2.数据展示功能 3.数据添加功能 4.数据编辑功能 5.数据删除功能 django请求生命周期流程图 crsf wsgirel 与 uwsgi ngi ...

  5. vue-router路由之路-极简教程

    01.什么是前端路由? 前端路由的一个大背景就是当下流行的单页应用SPA,一些主流的前端框架,如vue.react.angular都属于SPA,那什么是SPA呢? 1.1.SPA SPA(single ...

  6. 微信小程序地区和location_id对应关系

    点击查看代码 location_list = [ {'location_id': '101010100', 'location_name': ['北京', '北京', '北京']}, {'locati ...

  7. android studio 写一个桌球简单页面

    首先: 保存素材图: 其次: 参考:https://blog.csdn.net/nanhaoluo23/article/details/111144033 一步一步来,导入素材我就卡住了,找不到 于是 ...

  8. 2022年7月13日,第四组,周鹏,JS做计算器代码

    代码不难,看了我前面笔记的应该能看懂. 没看?(= ̄ω ̄=)喵了个咪(๑‾᷅^‾᷅๑) 嫌弃你 还看啥,去看啊!要不直接复制代码吧!( ̄へ ̄)( ̄へ ̄)( ̄へ ̄) Document 0 / * - 7 ...

  9. Flutter异常监控 - 壹 | 从Zone说起

    开启掘金成长之旅!这是我参与「掘金日新计划 · 12 月更文挑战」的第3天,点击查看活动详情 如果你正需要处理Flutter异常捕获,那么恭喜你,找对地了,这里从根源上给你准备了Flutter异常捕获 ...

  10. 2020强网杯青少赛Pursuing_The_Wind战队WRITEUP

    在线文档:https://docs.qq.com/doc/DZkN0RFFaR1ZDdHhD    旧事拾荒,偶遇该文档,既发. 战队信息 战队名称:Pursuing_The_Wind 战队排名:12 ...