大家好,我是冰河~~

对于线程池的核心类ThreadPoolExecutor来说,有哪些重要的属性和内部类为线程池的正确运行提供重要的保障呢?

ThreadPoolExecutor类中的重要属性

在ThreadPoolExecutor类中,存在几个非常重要的属性和方法,接下来,我们就介绍下这些重要的属性和方法。

ctl相关的属性

AtomicInteger类型的常量ctl是贯穿线程池整个生命周期的重要属性,它是一个原子类对象,主要用来保存线程的数量和线程池的状态,我们看下与这个属性相关的代码如下所示。

//主要用来保存线程数量和线程池的状态,高3位保存线程状态,低29位保存线程数量
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
//线程池中线程的数量的位数(32-3)
private static final int COUNT_BITS = Integer.SIZE - 3;
//表示线程池中的最大线程数量
//将数字1的二进制值向右移29位,再减去1
private static final int CAPACITY = (1 << COUNT_BITS) - 1;
//线程池的运行状态
private static final int RUNNING = -1 << COUNT_BITS;
private static final int SHUTDOWN = 0 << COUNT_BITS;
private static final int STOP = 1 << COUNT_BITS;
private static final int TIDYING = 2 << COUNT_BITS;
private static final int TERMINATED = 3 << COUNT_BITS;
//获取线程状态
private static int runStateOf(int c) { return c & ~CAPACITY; }
//获取线程数量
private static int workerCountOf(int c) { return c & CAPACITY; }
private static int ctlOf(int rs, int wc) { return rs | wc; }
private static boolean runStateLessThan(int c, int s) {
return c < s;
}
private static boolean runStateAtLeast(int c, int s) {
return c >= s;
}
private static boolean isRunning(int c) {
return c < SHUTDOWN;
}
private boolean compareAndIncrementWorkerCount(int expect) {
return ctl.compareAndSet(expect, expect + 1);
}
private boolean compareAndDecrementWorkerCount(int expect) {
return ctl.compareAndSet(expect, expect - 1);
}
private void decrementWorkerCount() {
do {} while (! compareAndDecrementWorkerCount(ctl.get()));
}

对于线程池的各状态说明如下所示。

  • RUNNING:运行状态,能接收新提交的任务,并且也能处理阻塞队列中的任务
  • SHUTDOWN: 关闭状态,不能再接收新提交的任务,但是可以处理阻塞队列中已经保存的任务,当线程池处于RUNNING状态时,调用shutdown()方法会使线程池进入该状态
  • STOP: 不能接收新任务,也不能处理阻塞队列中已经保存的任务,会中断正在处理任务的线程,如果线程池处于RUNNING或SHUTDOWN状态,调用shutdownNow()方法,会使线程池进入该状态
  • TIDYING: 如果所有的任务都已经终止,有效线程数为0(阻塞队列为空,线程池中的工作线程数量为0),线程池就会进入该状态。
  • TERMINATED: 处于TIDYING状态的线程池调用terminated ()方法,会使用线程池进入该状态

也可以按照ThreadPoolExecutor类的注释,将线程池的各状态之间的转化总结成如下图所示。

  • RUNNING -> SHUTDOWN:显式调用shutdown()方法, 或者隐式调用了finalize()方法
  • (RUNNING or SHUTDOWN) -> STOP:显式调用shutdownNow()方法
  • SHUTDOWN -> TIDYING:当线程池和任务队列都为空的时候
  • STOP -> TIDYING:当线程池为空的时候
  • TIDYING -> TERMINATED:当 terminated() hook 方法执行完成时候

其他重要属性

除了ctl相关的属性外,ThreadPoolExecutor类中其他一些重要的属性如下所示。

//用于存放任务的阻塞队列
private final BlockingQueue<Runnable> workQueue;
//可重入锁
private final ReentrantLock mainLock = new ReentrantLock();
//存放线程池中线程的集合,访问这个集合时,必须获得mainLock锁
private final HashSet<Worker> workers = new HashSet<Worker>();
//在锁内部阻塞等待条件完成
private final Condition termination = mainLock.newCondition();
//线程工厂,以此来创建新线程
private volatile ThreadFactory threadFactory;
//拒绝策略
private volatile RejectedExecutionHandler handler;
//默认的拒绝策略
private static final RejectedExecutionHandler defaultHandler = new AbortPolicy();

ThreadPoolExecutor类中的重要内部类

在ThreadPoolExecutor类中存在对于线程池的执行至关重要的内部类,Worker内部类和拒绝策略内部类。接下来,我们分别看这些内部类。

Worker内部类

Worker类从源代码上来看,实现了Runnable接口,说明其本质上是一个用来执行任务的线程,接下来,我们看下Worker类的源代码,如下所示。

private final class Worker extends AbstractQueuedSynchronizer implements Runnable{
private static final long serialVersionUID = 6138294804551838833L;
//真正执行任务的线程
final Thread thread;
//第一个Runnable任务,如果在创建线程时指定了需要执行的第一个任务
//则第一个任务会存放在此变量中,此变量也可以为null
//如果为null,则线程启动后,通过getTask方法到BlockingQueue队列中获取任务
Runnable firstTask;
//用于存放此线程完全的任务数,注意:使用了volatile关键字
volatile long completedTasks; //Worker类唯一的构造放大,传递的firstTask可以为null
Worker(Runnable firstTask) {
//防止在调用runWorker之前被中断
setState(-1);
this.firstTask = firstTask;
//使用ThreadFactory 来创建一个新的执行任务的线程
this.thread = getThreadFactory().newThread(this);
}
//调用外部ThreadPoolExecutor类的runWorker方法执行任务
public void run() {
runWorker(this);
} //是否获取到锁
//state=0表示锁未被获取
//state=1表示锁被获取
protected boolean isHeldExclusively() {
return getState() != 0;
} protected boolean tryAcquire(int unused) {
if (compareAndSetState(0, 1)) {
setExclusiveOwnerThread(Thread.currentThread());
return true;
}
return false;
} protected boolean tryRelease(int unused) {
setExclusiveOwnerThread(null);
setState(0);
return true;
} public void lock() { acquire(1); }
public boolean tryLock() { return tryAcquire(1); }
public void unlock() { release(1); }
public boolean isLocked() { return isHeldExclusively(); } void interruptIfStarted() {
Thread t;
if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
try {
t.interrupt();
} catch (SecurityException ignore) {
}
}
}
}

在Worker类的构造方法中,可以看出,首先将同步状态state设置为-1,设置为-1是为了防止runWorker方法运行之前被中断。这是因为如果其他线程调用线程池的shutdownNow()方法时,如果Worker类中的state状态的值大于0,则会中断线程,如果state状态的值为-1,则不会中断线程。

Worker类实现了Runnable接口,需要重写run方法,而Worker的run方法本质上调用的是ThreadPoolExecutor类的runWorker方法,在runWorker方法中,会首先调用unlock方法,该方法会将state置为0,所以这个时候调用shutDownNow方法就会中断当前线程,而这个时候已经进入了runWork方法,就不会在还没有执行runWorker方法的时候就中断线程。

注意:大家需要重点理解Worker类的实现。

拒绝策略内部类

在线程池中,如果workQueue阻塞队列满了,并且没有空闲的线程池,此时,继续提交任务,需要采取一种策略来处理这个任务。而线程池总共提供了四种策略,如下所示。

  • 直接抛出异常,这也是默认的策略。实现类为AbortPolicy。
  • 用调用者所在的线程来执行任务。实现类为CallerRunsPolicy。
  • 丢弃队列中最靠前的任务并执行当前任务。实现类为DiscardOldestPolicy。
  • 直接丢弃当前任务。实现类为DiscardPolicy。

在ThreadPoolExecutor类中提供了4个内部类来默认实现对应的策略,如下所示。

public static class CallerRunsPolicy implements RejectedExecutionHandler {

	public CallerRunsPolicy() { }

	public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
if (!e.isShutdown()) {
r.run();
}
}
} public static class AbortPolicy implements RejectedExecutionHandler { public AbortPolicy() { } public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
throw new RejectedExecutionException("Task " + r.toString() + " rejected from " + e.toString());
}
} public static class DiscardPolicy implements RejectedExecutionHandler { public DiscardPolicy() { } public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
}
} public static class DiscardOldestPolicy implements RejectedExecutionHandler { public DiscardOldestPolicy() { } public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
if (!e.isShutdown()) {
e.getQueue().poll();
e.execute(r);
}
}
}

我们也可以通过实现RejectedExecutionHandler接口,并重写RejectedExecutionHandler接口的rejectedExecution方法来自定义拒绝策略,在创建线程池时,调用ThreadPoolExecutor的构造方法,传入我们自己写的拒绝策略。

例如,自定义的拒绝策略如下所示。

public class CustomPolicy implements RejectedExecutionHandler {

	public CustomPolicy() { }

	public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
if (!e.isShutdown()) {
System.out.println("使用调用者所在的线程来执行任务")
r.run();
}
}
}

使用自定义拒绝策略创建线程池。

new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>(),
Executors.defaultThreadFactory(),
new CustomPolicy());

今天就到这儿吧,我是冰河,我们下期见~~

【高并发】通过源码深度解析ThreadPoolExecutor类是如何保证线程池正确运行的的更多相关文章

  1. 解析ThreadPoolExecutor类是如何保证线程池正确运行的

    摘要:对于线程池的核心类ThreadPoolExecutor来说,有哪些重要的属性和内部类为线程池的正确运行提供重要的保障呢? 本文分享自华为云社区<[高并发]通过源码深度解析ThreadPoo ...

  2. 【高并发】通过源码深度分析线程池中Worker线程的执行流程

    大家好,我是冰河~~ 在<高并发之--通过ThreadPoolExecutor类的源码深度解析线程池执行任务的核心流程>一文中我们深度分析了线程池执行任务的核心流程,在ThreadPool ...

  3. Java高并发程序设计学习笔记(六):JDK并发包(线程池的基本使用、ForkJoin)

    转自:https://blog.csdn.net/dataiyangu/article/details/86573222 1. 线程池的基本使用1.1. 为什么需要线程池1.2. JDK为我们提供了哪 ...

  4. 源码深度解析SpringMvc请求运行机制(转)

    源码深度解析SpringMvc请求运行机制 本文依赖的是springmvc4.0.5.RELEASE,通过源码深度解析了解springMvc的请求运行机制.通过源码我们可以知道从客户端发送一个URL请 ...

  5. 【高并发】深度解析ScheduledThreadPoolExecutor类的源代码

    在[高并发专题]的专栏中,我们深度分析了ThreadPoolExecutor类的源代码,而ScheduledThreadPoolExecutor类是ThreadPoolExecutor类的子类.今天我 ...

  6. 【高并发】通过ThreadPoolExecutor类的源码深度解析线程池执行任务的核心流程

    核心逻辑概述 ThreadPoolExecutor是Java线程池中最核心的类之一,它能够保证线程池按照正常的业务逻辑执行任务,并通过原子方式更新线程池每个阶段的状态. ThreadPoolExecu ...

  7. 并发编程(十五)——定时器 ScheduledThreadPoolExecutor 实现原理与源码深度解析

    在上一篇线程池的文章<并发编程(十一)—— Java 线程池 实现原理与源码深度解析(一)>中从ThreadPoolExecutor源码分析了其运行机制.限于篇幅,留下了Scheduled ...

  8. 并发编程(十二)—— Java 线程池 实现原理与源码深度解析 之 submit 方法 (二)

    在上一篇<并发编程(十一)—— Java 线程池 实现原理与源码深度解析(一)>中提到了线程池ThreadPoolExecutor的原理以及它的execute方法.这篇文章是接着上一篇文章 ...

  9. 并发编程(十一)—— Java 线程池 实现原理与源码深度解析(一)

    史上最清晰的线程池源码分析 鼎鼎大名的线程池.不需要多说!!!!! 这篇博客深入分析 Java 中线程池的实现. 总览 下图是 java 线程池几个相关类的继承结构:    先简单说说这个继承结构,E ...

随机推荐

  1. 什么是HTML 5?

    HTML 5是HTML的新标准,其主要目标是无需任何额外的插件如Flash.Silverlight等,就可以传输所有内容.它囊括了动画.视频.丰富的图形用户界面等. HTML5是由万维网联盟(W3C) ...

  2. 学习Jenkins(二)

    一:持续集成的概念: 总体的概括 持续集成Continuous Integration 持续交付Continuous Delivery 持续部署Continuous Deployment 二:安装部署 ...

  3. 学习SVN02

    代码发布方案: 1,安装,优化 软件环境,(nginx,lvs)  <-------运维工程师 2,程序代码(不断更新).   <--------开发工程师,(开发,运维都可以发布) 3, ...

  4. C++面向对象 - 类的前向声明的用法

    C++中的类应当是先定义,然后使用.但在处理相对复杂的问题,比如考虑类的组合时,有可能遇到两个类相互引用的情况,这种情况称为循环依赖. 考虑下面代码: class A { public: void f ...

  5. 企业流程再造(BPR)--系统重构

    企业流程再造(BPR) 企业流程:指生产或服务过程中一连串活动的工作流程 企业流程再造:对企业流程所进行的根本性的在思考和彻底的再设计,以使企业的速度,质量,服务和成本等关键业绩指标获得根本性的改善

  6. 创建axios拦截器

    上一篇说axios并发的时候有提到 axios的请求统一管理是为了创建拦截器 具体说一下拦截器的创建 import Vue from 'vue'; import axios from 'axios'; ...

  7. HTML5离线存储整理

    前端html部分 //canvas.html <!DOCTYPE html> <html manifest="/test.appcache"> <he ...

  8. A Beginner’s Introduction to CSS Animation中文版

    现在越来越多的网站正在使用动画,无论是以GIF,SVG,WebGL,背景视频等形式. 当正确使用时,网络上的动画带来生机和交互性,为用户增添了额外的反馈和体验. 在本教程中,我将向您介绍CSS动画; ...

  9. 【uniapp 开发】uni-app 技术点的链接记录

    优雅的H5下拉刷新.零依赖,高性能,多主题,易拓展 https://ask.dcloud.net.cn/article/12772 图像(头像)选择,截取,压缩,上传的分享 https://ask.d ...

  10. ccf201912-1 报数 C++代码实现

    代码实现: #include<iostream> using namespace std; /*题目限制为三位数*/ /*思路: 1.用一个长度为4的数组(初值为0)保存每个人分别跳过了几 ...