题意:给你三个1~n的排列a,b,c,问你在 (i,j)(1<=i<=n,1<=j<=n,i≠j),有多少个有序实数对(i,j)满足在三个排列中,i都在j的前面。

暴力求的话是三维偏序,相对比较困难。但是我们可以用一些简单的方法。

设在a中i在j前面的有序实数对数为A,b中为B,c中为C。(其实显然A=B=C=n*(n-1)/2)

要求的即为A∩B∩C。

利用容斥原理A+B+C-A∩B-A∩C-B∩C+A∩B∩C=A∪B∪C ①,以及Ω-A∪B∪C=A∩B∩C ②可容易求得。(显然Ω=n*(n-1))

②式怎么来的呢?显然,在三个序列中均满足i在j前面的有序实数对(i,j),必然与在三个序列中都未出现的有序实数对(j,i)一一对应,证毕。

而A∩B、A∩C、B∩C都可以通过二维偏序(排序+树状数组)求得。

所以最后答案就是(n*(n-1)-(n*(n-1)/2*3-A∩B-A∩C-B∩C))/2。

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
int n;
int d[200005];
void Update(int p){for(;p<=n;p+=(p&(-p))) ++d[p];}
int Query(int p){int res=0; for(;p;p-=(p&(-p))) res+=d[p]; return res;}
ll A[3];
struct data{
int x,y;
data(const int &x,const int &y){
this->x=x;
this->y=y;
}
data(){}
}a[200005],b[200005],c[200005],p[3][200005];
bool operator < (const data &a,const data &b){
return a.x<b.x;
}
int main(){
// freopen("g.in","r",stdin);
scanf("%d",&n);
for(int i=1;i<=n;++i){
scanf("%d",&a[i].x);
a[i].y=i;
}
sort(a+1,a+n+1);
for(int i=1;i<=n;++i){
scanf("%d",&b[i].x);
b[i].y=i;
}
sort(b+1,b+n+1);
for(int i=1;i<=n;++i){
scanf("%d",&c[i].x);
c[i].y=i;
}
sort(c+1,c+n+1);
for(int i=1;i<=n;++i){
p[0][i]=data(a[i].y,b[i].y);
p[1][i]=data(a[i].y,c[i].y);
p[2][i]=data(b[i].y,c[i].y);
}
for(int i=0;i<3;++i){
sort(p[i]+1,p[i]+n+1);
memset(d,0,sizeof(d));
for(int j=1;j<=n;++j){
A[i]+=(ll)Query(p[i][j].y);
Update(p[i][j].y);
}
}
printf("%I64d\n",((ll)n*(ll)(n-1)-((ll)n*(ll)(n-1)/2ll*3ll-A[0]-A[1]-A[2]))/2ll);
return 0;
}

【容斥原理】【推导】【树状数组】Gym - 101485G - Guessing Camels的更多相关文章

  1. HDU 4777 Rabbit Kingdom --容斥原理+树状数组

    题意: 给一个数的序列,询问一些区间,问区间内与区间其他所有的数都互质的数有多少个. 解法: 直接搞有点难, 所谓正难则反,我们求区间内与其他随便某个数不互质的数有多少个,然后区间长度减去它就是答案了 ...

  2. Codeforces Gym 100114 H. Milestones 离线树状数组

    H. Milestones Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100114 Descripti ...

  3. Gym 101908C - Pizza Cutter - [树状数组]

    题目链接:https://codeforces.com/gym/101908/problem/C 题意: 一块正方形披萨,有 $H$ 刀是横切的,$V$ 刀是竖切的,不存在大于等于三条直线交于一点.求 ...

  4. Codeforces Gym 100269F Flight Boarding Optimization 树状数组维护dp

    Flight Boarding Optimization 题目连接: http://codeforces.com/gym/100269/attachments Description Peter is ...

  5. Gym - 101630G The Great Wall (前缀和+树状数组+二分)

    题意:有一个序列,一开始所有的元素都是ai,你可以选择两个长度相等的区间,如果某个元素被一个区间覆盖,那么变为bi,如果被两个区间都覆盖,那么变为ci.问所有区间的选择方法中产生的第k小的元素总和. ...

  6. HDU 4947 GCD Array 容斥原理+树状数组

    GCD Array Time Limit: 11000/5500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total ...

  7. Gym 100960G (set+树状数组)

    Problem Youngling Tournament 题目大意 给一个序列a[i],每次操作可以更改一个数,每次询问 将序列排序后有多少个数a[i]>=sum[i-1]. n<=10^ ...

  8. Gym - 101755G Underpalindromity (树状数组)

    Let us call underpalindromity of array b of length k the minimal number of times one need to increme ...

  9. Gym - 100269F Flight Boarding Optimization(dp+树状数组)

    原题链接 题意: 现在有n个人,s个位置和你可以划分长k个区域你可以把s个位置划分成k个区域,这样每个人坐下你的代价是该区域内,在你之前比你小的人的数量问你怎么划分这s个位置(当然,每个区域必须是连续 ...

随机推荐

  1. Lithium中关键特性更新

    Lithium中关键特性更新 1. Lithium特性更新概述 Lithium相对于Helium更新特性共27项,其中原有特性提升或增强13项,新增特性14项,如下表所示 特性类型 相对于Helium ...

  2. ubuntu14.04安装使用NviDIA显卡驱动

    想给自己的ubuntu换N卡驱动的原因: 一方面,由于自己电脑在编译源代码8线程全开(make -j8)时,CPU温度呼呼涨到八九十度,从而常常导致系统保护自动关机,让人有点不爽.网上有说ubuntu ...

  3. win32的回调函数

    [转]http://blog.csdn.net/w419675647/article/details/6599070 众所周知,win32的回调函数WndProc()是操作系统调用的函数,win32用 ...

  4. UBIFS学习笔记

    在做项目的时候,发现flash芯片有异常现象,经过打印分析,发现是UBIFS方面设置有一些问题,经过查阅一部分资料,最终得到问题的答案. 在解决问题的过程中,发现打印信息比较重要,但网上并没有直接的相 ...

  5. 基于scrapy的分布式爬虫抓取新浪微博个人信息和微博内容存入MySQL

    为了学习机器学习深度学习和文本挖掘方面的知识,需要获取一定的数据,新浪微博的大量数据可以作为此次研究历程的对象 一.环境准备   python 2.7  scrapy框架的部署(可以查看上一篇博客的简 ...

  6. 做php网站后台开发,在Linux系统上进行更好吗?【转载】

    1. PHP是开源软件,它在bsd/linux/win下都有很好的正式版及孪生版.并非开发php就必须要在linux下进行.主机服务商们习惯性的把asp与php分为两个主机系列几进行销售.由于asp只 ...

  7. fastdfs5.11+centos7.2 按照部署(一)【转载】

    1.绪论 最近要用到fastDFS,所以自己研究了一下,在搭建FastDFS的过程中遇到过很多的问题,为了能帮忙到以后搭建FastDFS的同学,少走弯路,与大家分享一下.FastDFS的作者淘宝资深架 ...

  8. Java学习(匿名对象、内部类、包、import、代码块)

    一.匿名对象 概念:匿名对象是指在创建对象时,只有创建的语句,却没有把对象地址值赋给某个变量. 特点: (1)匿名对象直接使用,没有变量名.当做形参使用. new Person().name=&quo ...

  9. 常用的gnome shell扩展

    usertheme 启用后可自定义shell主题dash-to-dock dock设置unite 将左下角通知栏融入顶部栏(仿unity风格)topicons plus 将左下角通知栏融入顶部栏tas ...

  10. gcc编译器参数

    [gcc编译步骤] 1.预处理,生成.i的文件[预处理器cpp] 2.将预处理后的文件转换成汇编语言,生成文件.s[编译器egcs] 3.由汇编变为目标代码(机器代码)生成.o的文件[汇编器as] 4 ...