几何:pick定理详解
一、概念
假设P的内部有I(P)个格点,边界上有B(P)个格点,则P的面积A(P)为:A(P)=I(P)+B(P)/2-1。
二、说明
Pick定理主要是计算格点多边形(定点全是格点的不自交图形)P的面积与其边界和内部格点数之间的关系。
格点多边形的面积A(P)可以通过叉积计算出来,不过叉积计算出来的面积是实际面积的2倍;
边界上的格点B(P)可以通过计算相邻两点的横坐标之差与纵坐标之差的最大公约数的和得到;
内部的格点I(P)则通过公式得:I(P) = A(P)-B(P)/2+1计算出。
解释:
a.关于边界格点计算两点横纵坐标之差就是以两个点构成的边做坐标轴,组成的三角形(或者线)的两个之角标求gcd
b.格点多边形的面积是通过将多边形固定一个点,然后在遍历每两个点,三个点构成的三角形求面积。由于叉积可以为负,所以不必担心多加的三角形或者不在多边形内部的三角形,都会减去。
三、代码
#include <stdio.h>
#include <math.h>
#include<stdlib.h>
struct node
{
int x,y;
} point[]; int gcd(int a,int b)//gcd
{
if(b==)
return a;
return
gcd(b,a%b);
} int Area(node a,node b)//叉积
{
return a.x*b.y-a.y*b.x;
} int main()
{
int T,case1=;
scanf("%d",&T);
int n;
while(T--)
{
int a=,p=,dx,dy,i;
scanf("%d",&n);
point[].x=;
point[].y=;
for(i=; i<=n; i++)
{
scanf("%d%d",&point[i].x,&point[i].y); /*求每条边上的点*/
dx=abs(point[i].x);
dy=abs(point[i].y);
p+=gcd(dx,dy); /*用叉积求面积*/
point[i].x+=point[i-].x;
point[i].y+=point[i-].y;
a+=Area(point[i],point[i-]); }
/*最后面积要取正值*/
a=abs(a); printf("Scenario #%d:\n",case1++);
printf("%d %d %.1f\n\n",(a-p+)/,p,0.5*a);
}
return ;
}
几何:pick定理详解的更多相关文章
- pick定理详解
一.概念 假设P的内部有I(P)个格点,边界上有B(P)个格点,则P的面积A(P)为:A(P)=I(P)+B(P)/2-1. 二.说明 Pick定理主要是计算格点多边形(定点全是格点的不自交图形)P的 ...
- Lucas定理详解
这篇博客是从另一位园友那里存的,但是当时忘了写原文的地址,如果有找到原文地址的请评论联系! Lucas定理解决的问题是组合数取模.数学上来说,就是求 \(\binom n m\mod p\).(p为素 ...
- 高斯消元法(Gauss Elimination)【超详解&模板】
高斯消元法,是线性代数中的一个算法,可用来求解线性方程组,并可以求出矩阵的秩,以及求出可逆方阵的逆矩阵.高斯消元法的原理是:若用初等行变换将增广矩阵 化为 ,则AX = B与CX = D是同解方程组. ...
- 《Unity3D 实战核心技术详解》书中关于矩阵的错误
最近一直在学习实时渲染,不免要接触线性代数.而渲染中,一定会用到矩阵,当我再次去复习我之前看的书时,发现<Unity3D 实战核心技术详解>关于矩阵就有几处错误 ,特标注出来. 书的第一章 ...
- POJ 1659 Frogs' Neighborhood(可图性判定—Havel-Hakimi定理)【超详解】
Frogs' Neighborhood Time Limit: 5000MS Memory Limit: 10000K Total Submissions: 9897 Accepted: 41 ...
- (转载)--SG函数和SG定理【详解】
在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧. 必胜点和必败点的概念: P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败. N点:必胜点 ...
- 机器学习经典算法详解及Python实现--基于SMO的SVM分类器
原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector ...
- redis配置详解
##redis配置详解 # Redis configuration file example. # # Note that in order to read the configuration fil ...
- Redis 配置文件 redis.conf 项目详解
Redis.conf 配置文件详解 # [Redis](http://yijiebuyi.com/category/redis.html) 配置文件 # 当配置中需要配置内存大小时,可以使用 1k, ...
随机推荐
- Eng1—English daily notes
English daily notes 2015年 4月 Phrases 1. As a side note #作为附注,顺便说句题外话,和by the way意思相近,例句: @1:As a sid ...
- 数组C - 玛雅日历
During his last sabbatical, professor M. A. Ya made a surprising discovery about the old Maya calend ...
- vue去除地址栏上的'#'号
const router = new VueRouter({ routes:[], mode :"history"//除去#号 }
- 2、java语言基础
1.关键字 被Java语言赋予特定含义的单词被称为关键字关键字都是小写的在Java开发工具中,针对关键字有特殊颜色的标记 2.标识符 Java标识符命名规则 ·标识符是由,数字,字母,下划线和美元符号 ...
- Spring Tool Suite 配置和使用
Spring Tool Suite使用 1.下载地址: http://spring.io/tools 2.配置字符编码:UTF-8 默认的编码是ISO-8859-1的西欧文字编 1.windows-- ...
- zedboard学习记录.3.oled,创建IP
环境:win7 .vivado 2017.4 .zedboard rev.d 首先建立工程. 1.Tools -> Create and Package New IP 2.Create AXI4 ...
- ThinkPHP的运行流程-1
我在index\Lib\Action\目录下新建了一个ShowAction.class.php文件.ps:该目录是控制器的目录. 然后这个文件中继承了action这个类.代码如下: 1 2 3 4 5 ...
- shell脚本自带变量的含义
$0 Shell本身的文件名 $1-$n 添加到Shell的各参数值.$1是第1参数.$2是第2参数… $$ Shell本身的PID(ProcessID) $! Shell最后运行的后台Process ...
- c++鼠标点点,获取坐标值,放入到txt文件中
// oj3.cpp : Defines the entry point for the console application.// #include "stdafx.h"#in ...
- javascript sleep方法
function sleep(numberMillis) { var now = new Date(); var exitTime = now.getTime() + numberMi ...