几何:pick定理详解
一、概念
假设P的内部有I(P)个格点,边界上有B(P)个格点,则P的面积A(P)为:A(P)=I(P)+B(P)/2-1。
二、说明
Pick定理主要是计算格点多边形(定点全是格点的不自交图形)P的面积与其边界和内部格点数之间的关系。
格点多边形的面积A(P)可以通过叉积计算出来,不过叉积计算出来的面积是实际面积的2倍;
边界上的格点B(P)可以通过计算相邻两点的横坐标之差与纵坐标之差的最大公约数的和得到;
内部的格点I(P)则通过公式得:I(P) = A(P)-B(P)/2+1计算出。
解释:
a.关于边界格点计算两点横纵坐标之差就是以两个点构成的边做坐标轴,组成的三角形(或者线)的两个之角标求gcd
b.格点多边形的面积是通过将多边形固定一个点,然后在遍历每两个点,三个点构成的三角形求面积。由于叉积可以为负,所以不必担心多加的三角形或者不在多边形内部的三角形,都会减去。
三、代码
#include <stdio.h>
#include <math.h>
#include<stdlib.h>
struct node
{
int x,y;
} point[]; int gcd(int a,int b)//gcd
{
if(b==)
return a;
return
gcd(b,a%b);
} int Area(node a,node b)//叉积
{
return a.x*b.y-a.y*b.x;
} int main()
{
int T,case1=;
scanf("%d",&T);
int n;
while(T--)
{
int a=,p=,dx,dy,i;
scanf("%d",&n);
point[].x=;
point[].y=;
for(i=; i<=n; i++)
{
scanf("%d%d",&point[i].x,&point[i].y); /*求每条边上的点*/
dx=abs(point[i].x);
dy=abs(point[i].y);
p+=gcd(dx,dy); /*用叉积求面积*/
point[i].x+=point[i-].x;
point[i].y+=point[i-].y;
a+=Area(point[i],point[i-]); }
/*最后面积要取正值*/
a=abs(a); printf("Scenario #%d:\n",case1++);
printf("%d %d %.1f\n\n",(a-p+)/,p,0.5*a);
}
return ;
}
几何:pick定理详解的更多相关文章
- pick定理详解
一.概念 假设P的内部有I(P)个格点,边界上有B(P)个格点,则P的面积A(P)为:A(P)=I(P)+B(P)/2-1. 二.说明 Pick定理主要是计算格点多边形(定点全是格点的不自交图形)P的 ...
- Lucas定理详解
这篇博客是从另一位园友那里存的,但是当时忘了写原文的地址,如果有找到原文地址的请评论联系! Lucas定理解决的问题是组合数取模.数学上来说,就是求 \(\binom n m\mod p\).(p为素 ...
- 高斯消元法(Gauss Elimination)【超详解&模板】
高斯消元法,是线性代数中的一个算法,可用来求解线性方程组,并可以求出矩阵的秩,以及求出可逆方阵的逆矩阵.高斯消元法的原理是:若用初等行变换将增广矩阵 化为 ,则AX = B与CX = D是同解方程组. ...
- 《Unity3D 实战核心技术详解》书中关于矩阵的错误
最近一直在学习实时渲染,不免要接触线性代数.而渲染中,一定会用到矩阵,当我再次去复习我之前看的书时,发现<Unity3D 实战核心技术详解>关于矩阵就有几处错误 ,特标注出来. 书的第一章 ...
- POJ 1659 Frogs' Neighborhood(可图性判定—Havel-Hakimi定理)【超详解】
Frogs' Neighborhood Time Limit: 5000MS Memory Limit: 10000K Total Submissions: 9897 Accepted: 41 ...
- (转载)--SG函数和SG定理【详解】
在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧. 必胜点和必败点的概念: P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败. N点:必胜点 ...
- 机器学习经典算法详解及Python实现--基于SMO的SVM分类器
原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector ...
- redis配置详解
##redis配置详解 # Redis configuration file example. # # Note that in order to read the configuration fil ...
- Redis 配置文件 redis.conf 项目详解
Redis.conf 配置文件详解 # [Redis](http://yijiebuyi.com/category/redis.html) 配置文件 # 当配置中需要配置内存大小时,可以使用 1k, ...
随机推荐
- HDU 2516 取石子游戏 (找规律)
题目链接 Problem Description 1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍.取完者胜.先取者负输出" ...
- PHP 5 MySQLi 函数总结
连接数据库 mysqli_connect() 函数打开一个到 MySQL 服务器的新的连接. <?php $con=mysqli_connect("localhost",&q ...
- 面向过程编程(OPP) 和面向对象编程(OOP)的关系
面向过程编程(OPP) 和面向对象编程(OOP)的关系 原文链接:http://blog.csdn.net/phphot/article/details/3985480 关于面向过程的编程(OPP)和 ...
- Android Service使用简单介绍
作为一个android初学者,经常对service的使用感到困惑.今天结合Google API 对Service这四大组件之一,进行简单使用说明. 希望对和我一样的初学者有帮助,如有不对的地方,也希望 ...
- nginx证书制作以及配置https并设置访问http自动跳转https(反向代理转发jboss)
nginx证书制作以及配置https并设置访问http自动跳转https 默认情况下ssl模块并未被安装,如果要使用该模块则需要在编译时指定–with-http_ssl_module参数,安装模块依赖 ...
- ahttp
# -*- coding: utf-8 -*- # @Time : 2018/8/20 14:35 # @Author : cxa # @File : chttp.py # @Software: Py ...
- NFS生产场景优化
1.硬件上多块网卡bond,增加吞吐量,至少千兆.sas/ssd磁盘组raid5或raid10 2.服务端配置:/data 172.16.1.0/24(rw,sync,all_squash,anonu ...
- Maven整合Spring与Solr
首先,在maven的pom.xml文件中配置对spring和solrj客户端的依赖: <project xmlns="http://maven.apache.org/POM/4.0.0 ...
- Error -27796: Failed to connect to server "ip地址": [10060] Connection timed out
如果出现Error -27796: Failed to connect to server "ip地址": [10060] Connection timed out 这样的错误,如 ...
- 对于ntp.conf的理解
允许与我们的时间源同步时间,但是不允许源查询或修改这个系统上的服务. # Permit time synchronization with our time source, but do not # ...