一、概念

  假设P的内部有I(P)个格点,边界上有B(P)个格点,则P的面积A(P)为:A(P)=I(P)+B(P)/2-1。

二、说明

  Pick定理主要是计算格点多边形(定点全是格点的不自交图形)P的面积与其边界和内部格点数之间的关系。

  格点多边形的面积A(P)可以通过叉积计算出来,不过叉积计算出来的面积是实际面积的2倍;

  边界上的格点B(P)可以通过计算相邻两点的横坐标之差与纵坐标之差的最大公约数的和得到;

  内部的格点I(P)则通过公式得:I(P) = A(P)-B(P)/2+1计算出。

  解释:

   a.关于边界格点计算两点横纵坐标之差就是以两个点构成的边做坐标轴,组成的三角形(或者线)的两个之角标求gcd

   b.格点多边形的面积是通过将多边形固定一个点,然后在遍历每两个点,三个点构成的三角形求面积。由于叉积可以为负,所以不必担心多加的三角形或者不在多边形内部的三角形,都会减去。

三、代码

#include <stdio.h>
#include <math.h>
#include<stdlib.h>
struct node
{
int x,y;
} point[]; int gcd(int a,int b)//gcd
{
if(b==)
return a;
return
gcd(b,a%b);
} int Area(node a,node b)//叉积
{
return a.x*b.y-a.y*b.x;
} int main()
{
int T,case1=;
scanf("%d",&T);
int n;
while(T--)
{
int a=,p=,dx,dy,i;
scanf("%d",&n);
point[].x=;
point[].y=;
for(i=; i<=n; i++)
{
scanf("%d%d",&point[i].x,&point[i].y); /*求每条边上的点*/
dx=abs(point[i].x);
dy=abs(point[i].y);
p+=gcd(dx,dy); /*用叉积求面积*/
point[i].x+=point[i-].x;
point[i].y+=point[i-].y;
a+=Area(point[i],point[i-]); }
/*最后面积要取正值*/
a=abs(a); printf("Scenario #%d:\n",case1++);
printf("%d %d %.1f\n\n",(a-p+)/,p,0.5*a);
}
return ;
}

几何:pick定理详解的更多相关文章

  1. pick定理详解

    一.概念 假设P的内部有I(P)个格点,边界上有B(P)个格点,则P的面积A(P)为:A(P)=I(P)+B(P)/2-1. 二.说明 Pick定理主要是计算格点多边形(定点全是格点的不自交图形)P的 ...

  2. Lucas定理详解

    这篇博客是从另一位园友那里存的,但是当时忘了写原文的地址,如果有找到原文地址的请评论联系! Lucas定理解决的问题是组合数取模.数学上来说,就是求 \(\binom n m\mod p\).(p为素 ...

  3. 高斯消元法(Gauss Elimination)【超详解&模板】

    高斯消元法,是线性代数中的一个算法,可用来求解线性方程组,并可以求出矩阵的秩,以及求出可逆方阵的逆矩阵.高斯消元法的原理是:若用初等行变换将增广矩阵 化为 ,则AX = B与CX = D是同解方程组. ...

  4. 《Unity3D 实战核心技术详解》书中关于矩阵的错误

    最近一直在学习实时渲染,不免要接触线性代数.而渲染中,一定会用到矩阵,当我再次去复习我之前看的书时,发现<Unity3D 实战核心技术详解>关于矩阵就有几处错误 ,特标注出来. 书的第一章 ...

  5. POJ 1659 Frogs' Neighborhood(可图性判定—Havel-Hakimi定理)【超详解】

    Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 9897   Accepted: 41 ...

  6. (转载)--SG函数和SG定理【详解】

    在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧. 必胜点和必败点的概念:        P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败.        N点:必胜点 ...

  7. 机器学习经典算法详解及Python实现--基于SMO的SVM分类器

    原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector  ...

  8. redis配置详解

    ##redis配置详解 # Redis configuration file example. # # Note that in order to read the configuration fil ...

  9. Redis 配置文件 redis.conf 项目详解

    Redis.conf 配置文件详解 # [Redis](http://yijiebuyi.com/category/redis.html) 配置文件 # 当配置中需要配置内存大小时,可以使用 1k, ...

随机推荐

  1. 【Atcoder】ARC088 D - Wide Flip

    [题目]D - Wide Flip [题意]给定n个数字的01序列,要求每次翻转>=k个数字使得全0,求最大的k.n<=10^5 [算法]数学 [题解]有两个角度可以得到等价的结论: 1. ...

  2. 20155335俞昆《Java程序设计》第五周总结

    #  20155335    <Java程序设计>第五周学习总结 ##  教材学习内容总结 ##  教材学习中的问题和解决过程 对于异常处理,程序中总有意想不到的状况所引发的的错误,Jav ...

  3. ckeditor+ckfinder+java

    (java)Ckdeitor+ckfinder整合 第一步:工具下载 首先下载:CKEditor 地址:http://cdeditor.com/dowmload 接着下载CKFinder 地址:htt ...

  4. Java从零到企业级电商项目实战

    欢迎关注我的微信公众号:"Java面试通关手册"(坚持原创,分享各种Java学习资源,面试题,优质文章,以及企业级Java实战项目回复关键字免费领取)回复关键字:"电商项 ...

  5. Linux下帮助命令

    帮助命令(各种命令区别)   最常用的帮助命令   help --help help cd 查看内置命令的使用 info man   help cd 查看内置命令的使用   获得帮助的途径:   ma ...

  6. 【转载】在GitHub上管理项目

    在GitHub上管理项目 新建repository 本地目录下,在命令行里新建一个代码仓库(repository) 里面只有一个README.md 命令如下: touch README.md git ...

  7. 中国区的Azure添加到 VSTS 的 Service Endpoint

    把中国区的Azure添加到 VSTS (Visual Studio Team System) 的 Service Endpoint. 这个是使用 VSTS 自动部署到中国区Azure的前置条件. Se ...

  8. [写出来才有价值系列:node.js]node.js 01-介绍及安装

    对于Node.js在百度百科上是这样解释的: Node.js是一个Javascript运行环境(runtime).实际上它是对Google V8引擎进行了封装.V8引 擎执行Javascript的速度 ...

  9. 修改系统时间为UTC时间

    1 拷贝时区文件 cp /usr/share/zoneinfo/Etc/GMT /etc/localtime 2 修改/etc/profile 在最后添加 TZ="Etc/GMT" ...

  10. hbase学习(一)hbase简介

    1.hadoop生态系统 2.hbase简介 非关系型数据库知识面扩展 cassandra.hbase.mongodb.redis couchdb,文件存储数据库 Neo4j非关系型图数据库 3.hb ...