题目链接:http://poj.org/problem?id=3903

题目链接:http://poj.org/problem?id=1631

题目链接:http://poj.org/problem?id=1887

题目解析:

这两道题都是直接求最长上升子序列,没什么好说的。

POJ 3903这题n为1000000,如果用n^2的算法肯定超时,所以要选择nlogn的算法。都是简单题。

#include <iostream>
#include <string.h>
#include <stdio.h>
#include <algorithm>
#include <math.h>
#define eps 1e-9
using namespace std;
int n,len,a[],d[];
int er(int q[],int l,int r,int key)//好好研究二分
{
int mid;
while(l<=r)
{
mid=(l+r)/;
if(q[mid]==key)
{
return mid;
}
else if(q[mid]>key)
{
r=mid-;
}
else l=mid+;
}
return l;
}
int main()
{
int we;
while(scanf("%d",&n)!=EOF)
{
for(int i=; i<=n; i++)
{
scanf("%d",&a[i]);
}
len=;
d[len]=a[];
for(int i=; i<=n; i++)
{
if(a[i]>d[len])
{
d[++len]=a[i];
}
else
{
we=er(d,,len,a[i]);
d[we]=a[i];
}
}
printf("%d\n",len);
}
return ;
}

POJ1631:

#include <iostream>
#include <string.h>
#include <stdio.h>
#include <algorithm>
#include <math.h>
#define eps 1e-9
using namespace std;
int n,len,a[],d[];
int er(int q[],int l,int r,int key)//好好研究二分
{
int mid;
while(l<=r)
{
mid=(l+r)/;
if(q[mid]==key)
{
return mid;
}
else if(q[mid]>key)
{
r=mid-;
}
else l=mid+;
}
return l;
}
int main()
{
int we,T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i=; i<=n; i++)
{
scanf("%d",&a[i]);
}
len=;
d[len]=a[];
for(int i=; i<=n; i++)
{
if(a[i]>d[len])
{
d[++len]=a[i];
}
else
{
we=er(d,,len,a[i]);
d[we]=a[i];
}
}
printf("%d\n",len);
}
return ;
}

POJ1887Testing the CATCHER:

#include <iostream>
#include <string.h>
#include <stdio.h>
#include <algorithm>
#include <math.h>
using namespace std;
int n,a[],d[],len;
int er(int q[],int l,int r,int key)//好好研究二分
{
int mid;
while(l<=r)
{
mid=(l+r)/;
if(q[mid]==key)
{
return mid;
}
else if(q[mid]>key)
{
r=mid-;
}
else l=mid+;
}
return l;
}
int main()
{
int tt,we,K=;
while(scanf("%d",&a[])!=EOF&&a[]!=-)
{
tt=;
while(scanf("%d",&a[++tt])!=EOF&&a[tt]!=-)
;
tt-=;
len=;
d[len]=a[tt];
for(int i=tt-; i>=; i--)
{
if(a[i]>d[len])
{
d[++len]=a[i];
}
else
{
we=er(d,,len,a[i]);
d[we]=a[i];
}
}
printf("Test #%d:\n",++K);
printf(" maximum possible interceptions: %d\n\n",len);
}
return ;
}

POJ3903Stock Exchange&&POJ1631Bridging signals最长上升子序列 &&POJ1887Testing the CATCHER(最长下降子序列)(LIS模版题)的更多相关文章

  1. poj 3903 Stock Exchange(最长上升子序列,模版题)

    题目 #include<stdio.h> //最长上升子序列 nlogn //入口参数:数组名+数组长度,类型不限,结构体类型可以通过重载运算符实现 //数组下标从1号开始. int bs ...

  2. 最长下降子序列O(n^2)及O(n*log(n))解法

    求最长下降子序列和LIS基本思路是完全一样的,都是很经典的DP题目. 问题大都类似于 有一个序列 a1,a2,a3...ak..an,求其最长下降子序列(或者求其最长不下降子序列)的长度. 以最长下降 ...

  3. 最长不下降子序列(LIS)

    最长上升子序列.最长不下降子序列,解法差不多,就一点等于不等于的差别,我这里说最长不下降子序列的. 有两种解法. 一种是DP,很容易想到,就这样: REP(i,n) { f[i]=; FOR(j,,i ...

  4. 最长不下降子序列 O(nlogn) || 记忆化搜索

    #include<stdio.h> ] , temp[] ; int n , top ; int binary_search (int x) { ; int last = top ; in ...

  5. BUY LOW, BUY LOWER_最长下降子序列

    Description The advice to "buy low" is half the formula to success in the bovine stock mar ...

  6. tyvj 1049 最长不下降子序列 n^2/nlogn

    P1049 最长不下降子序列 时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 求最长不下降子序列的长度 输入格式 第一行为n,表示n个数第二行n个数 输出格式 ...

  7. 最长不下降子序列的O(n^2)算法和O(nlogn)算法

    一.简单的O(n^2)的算法 很容易想到用动态规划做.设lis[]用于保存第1~i元素元素中最长不下降序列的长度,则lis[i]=max(lis[j])+1,且num[i]>num[j],i&g ...

  8. 最长不下降子序列//序列dp

    最长不下降子序列 时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 求最长不下降子序列的长度 输入格式 第一行为n,表示n个数第二行n个数 输出格式 最长不下降 ...

  9. 【tyvj】P1049 最长不下降子序列

    时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 求最长不下降子序列的长度 输入格式 第一行为n,表示n个数 第二行n个数 输出格式 最长不下降子序列的长度 测 ...

随机推荐

  1. cs108 03 ( 调试, java通用性)

    Debuger Great questions These questions will solve most bugs: what method shows the symptom ? what l ...

  2. 处理器拦截器(HandlerInterceptor)详解

    处理器拦截器(HandlerInterceptor)详解 编程界的小学生 关注 2017.04.06 15:19* 字数 881 阅读 657评论 0喜欢 4 简介SpringWebMVC的处理器拦截 ...

  3. 什么是Mybatis

    MyBatis 本是apache的一个开源项目iBatis, 2010年这个项目由apache software foundation 迁移到了google code,并且改名为MyBatis .iB ...

  4. DTD与XML Schema都是XML文档。(选择1项)

    DTD与XML Schema都是XML文档.(选择1项) A.正确 B.不正确 解答:DTD不是XML文件, schema是XML文档

  5. javascript年月日日期筛选控件

    来源:http://www.sucaihuo.com/js/1158.html demo:http://www.sucaihuo.com/jquery/11/1158/demo/

  6. Python3创建RIDE桌面快捷方式的另一种方法

    今天尝试了一下Python3下安装Robot Framework,但是原来的Python2下创建ride快捷方式的方法都不奏效,启动不了ride.于是,转为VBS脚本的方式来间接创建快捷方式.毕竟,每 ...

  7. 灵活的javaScript

    通常我们不像下面这样声明函数,因为会创建很多全局变量. function checkName() { // code } function checkEmail() { // code } 所以,我们 ...

  8. ios开发之--CGRect/CGSize/CGPoint/CGVector/CGAffineTransform/UIEdgeInsets/UIOffset和NSString之间的转换

    仅做记录,一个函数和字符串之间的互相转换 方法如下: UIKIT_EXTERN NSString *NSStringFromCGPoint(CGPoint point); UIKIT_EXTERN N ...

  9. 如何在Myeclipse中启动多个Tomcat

    比如:有两个版本的tomcat,一个5.*,一个6.*,此时由于两个工程分别部署在两个版本的tomcat下,需要同时启动两个tomcat,以下是方法: 1.特别要注意: 不要设置CATALINA_HO ...

  10. Influxdb时序数据库阅读笔记

    时序数据库 2017年2月Facebook开源了beringei时序数据库:到了4月基于PostgreSQL打造的时序数据库TimeScaleDB也开源了,而早在2016年7月,百度云在其天工物联网平 ...