32位CPU所含有的寄存器有:

4个数据寄存器(EAX、EBX、ECX和EDX)
2个变址和指针寄存器(ESI和EDI) 2个指针寄存器(ESP和EBP)
6个段寄存器(ES、CS、SS、DS、FS和GS)
1个指令指针寄存器(EIP) 1个标志寄存器(EFlags)

1、数据寄存器

数据寄存器主要用来保存操作数和运算结果等信息,从而节省读取操作数所需占用总线和访问存储器的时间。

32位CPU有4个32位的通用寄存器EAX、EBX、ECX和EDX。对低16位数据的存取,不会影响高16位的数据。这些
低16位寄存器分别命名为:AX、BX、CX和DX,它和先前的CPU中的寄存器相一致。

4个16位寄存器又可分割成8个独立的8位寄存器(AX:AH-AL、BX:BH-BL、CX:CH-CL、DX:DH-DL),每个寄
存器都有自己的名称,可独立存取。程序员可利用数据寄存器的这种“可分可合”的特性,灵活地处理字/字
节的信息。

AX和AL通常称为累加器(Accumulator):可用于乘、除、输入/输出等操作(在乘除指令中指定用来存放操作数)
BX称为基地址寄存器(Base Register):在计算存储器地址时,可作为基址寄存器使用。
CX称为计数寄存器(Count Register):用来保存计数值,如在移位指令、循环指令和串处理指令中用作隐含的计数器(当移多位时,要用CL来指明移位的位数)。DX在作双字长运算时,可把DX和AX组合在一起存放一个双字长数,DX用来存放高16位数据。此外,对某些I/O操作,DX可用来存放I/O的端口地址。
DX称为数据寄存器(Data Register)。在进行乘、除运算时,它可作为默认的操作数参与运算,也可用于存放I/O的端口地址。

在16位CPU中,AX、BX、CX和DX不能作为基址和变址寄存器来存放存储单元的地址,但在32位CPU中,其32位
寄存器EAX、EBX、ECX和EDX不仅可传送数据、暂存数据保存算术逻辑运算结果,而且也可作为指针寄存器,
所以,这些32位寄存器更具有通用性。

2、变址寄存器

32位CPU有2个32位通用寄存器ESI和EDI。其低16位对应先前CPU中的SI和DI,对低16位数据的存取,不影响
高16位的数据。

寄存器ESI、EDI、SI和DI称为变址寄存器(Index Register),它们主要用于存放存储单元在段内的偏移量,
用它们可实现多种存储器操作数的寻址方式,为以不同的地址形式访问存储单元提供方便。

变址寄存器不可分割成8位寄存器。作为通用寄存器,也可存储算术逻辑运算的操作数和运算结果。

它们可作一般的存储器指针使用。在字符串操作指令的执行过程中,对它们有特定的要求,而且还具有特
殊的功能。

3、指针寄存器

32位CPU有2个32位通用寄存器EBP和ESP。其低16位对应先前CPU中的SBP和SP,对低16位数据的存取,不影
响高16位的数据。

寄存器EBP、ESP、BP和SP称为指针寄存器(Pointer Register),主要用于存放堆栈内存储单元的偏移量,
用它们可实现多种存储器操作数的寻址方式,为以不同的地址形式访问存储单元提供方便。

指针寄存器不可分割成8位寄存器。作为通用寄存器,也可存储算术逻辑运算的操作数和运算结果。

它们主要用于访问堆栈内的存储单元,并且规定:

BP为基指针(Base Pointer)寄存器,用它可直接存取堆栈中的数据;
SP为堆栈指针(Stack Pointer)寄存器,用它只可访问栈顶。

4、段寄存器

段寄存器是根据内存分段的管理模式而设置的。内存单元的物理地址由段寄存器的值和一个偏移量组合而成
的,这样可用两个较少位数的值组合成一个可访问较大物理空间的内存地址。

CPU内部的段寄存器:

CS——代码段寄存器(Code Segment Register),其值为代码段的段值;
DS——数据段寄存器(Data Segment Register),其值为数据段的段值;
ES——附加段寄存器(Extra Segment Register),其值为附加数据段的段值;
SS——堆栈段寄存器(Stack Segment Register),其值为堆栈段的段值;
FS——附加段寄存器(Extra Segment Register),其值为附加数据段的段值;
GS——附加段寄存器(Extra Segment Register),其值为附加数据段的段值。

在16位CPU系统中,它只有4个段寄存器,所以,程序在任何时刻至多有4个正在使用的段可直接访问;在32位
微机系统中,它有6个段寄存器,所以,在此环境下开发的程序最多可同时访问6个段。

32位CPU有两个不同的工作方式:实方式和保护方式。在每种方式下,段寄存器的作用是不同的。有关规定简
单描述如下:
实方式: 前4个段寄存器CS、DS、ES和SS与先前CPU中的所对应的段寄存器的含义完全一致,内存单元的逻辑
地址仍为“段值:偏移量”的形式。为访问某内存段内的数据,必须使用该段寄存器和存储单元的偏移量。
保护方式: 在此方式下,情况要复杂得多,装入段寄存器的不再是段值,而是称为“选择子”(Selector)的某个值。。

5、指令指针寄存器

32位CPU把指令指针扩展到32位,并记作EIP,EIP的低16位与先前CPU中的IP作用相同。

指令指针EIP、IP(Instruction Pointer)是存放下次将要执行的指令在代码段的偏移量。在具有预取指令功
能的系统中,下次要执行的指令通常已被预取到指令队列中,除非发生转移情况。所以,在理解它们的功能
时,不考虑存在指令队列的情况。

在实方式下,由于每个段的最大范围为64K,所以,EIP中的高16位肯定都为0,此时,相当于只用其低16位
的IP来反映程序中指令的执行次序。

6、标志寄存器

一、运算结果标志位
1、进位标志CF(Carry Flag)
进位标志CF主要用来反映运算是否产生进位或借位。如果运算结果的最高位产生了一个进位或借位,那么,其值为1,否则其值为0。

使用该标志位的情况有:多字(字节)数的加减运算,无符号数的大小比较运算,移位操作,字(字节)之间移位,专门改变CF值的指令等。

2、奇偶标志PF(Parity Flag)
奇偶标志PF用于反映运算结果中“1”的个数的奇偶性。如果“1”的个数为偶数,则PF的值为1,否则其值为0。

利用PF可进行奇偶校验检查,或产生奇偶校验位。在数据传送过程中,为了提供传送的可靠性,如果采用奇偶校验的方法,就可使用该标志位。

3、辅助进位标志AF(Auxiliary Carry Flag)
在发生下列情况时,辅助进位标志AF的值被置为1,否则其值为0:

(1)、在字操作时,发生低字节向高字节进位或借位时;
(2)、在字节操作时,发生低4位向高4位进位或借位时。

对以上6个运算结果标志位,在一般编程情况下,标志位CF、ZF、SF和OF的使用频率较高,而标志位PF和AF的使用频率较低。

4、零标志ZF(Zero Flag)
零标志ZF用来反映运算结果是否为0。如果运算结果为0,则其值为1,否则其值为0。在判断运算结果是否为0时,可使用此标志位。

5、符号标志SF(Sign Flag)
符号标志SF用来反映运算结果的符号位,它与运算结果的最高位相同。在微机系统中,有符号数采用补码表示法,所以,SF也就反映运算结果的正负号。运算结果为正数时,SF的值为0,否则其值为1。

6、溢出标志OF(Overflow Flag)
溢出标志OF用于反映有符号数加减运算所得结果是否溢出。如果运算结果超过当前运算位数所能表示的范围,则称为溢出,OF的值被置为1,否则,OF的值被清为0。

“溢出”和“进位”是两个不同含义的概念,不要混淆。如果不太清楚的话,请查阅《计算机组成原理》课程中的有关章节。

二、状态控制标志位
状态控制标志位是用来控制CPU操作的,它们要通过专门的指令才能使之发生改变。

1、追踪标志TF(Trap Flag)
当追踪标志TF被置为1时,CPU进入单步执行方式,即每执行一条指令,产生一个单步中断请求。这种方式主要用于程序的调试。

指令系统中没有专门的指令来改变标志位TF的值,但程序员可用其它办法来改变其值。

2、中断允许标志IF(Interrupt-enable Flag)
中断允许标志IF是用来决定CPU是否响应CPU外部的可屏蔽中断发出的中断请求。但不管该标志为何值,CPU都必须响应CPU外部的不可屏蔽中断所发出的中断请求,以及CPU内部产生的中断请求。具体规定如下:

(1)、当IF=1时,CPU可以响应CPU外部的可屏蔽中断发出的中断请求;

(2)、当IF=0时,CPU不响应CPU外部的可屏蔽中断发出的中断请求。

CPU的指令系统中也有专门的指令来改变标志位IF的值。

3、方向标志DF(Direction Flag)
方向标志DF用来决定在串操作指令执行时有关指针寄存器发生调整的方向。具体规定在第5.2.11节——字符串操作指令——中给出。在微机的指令系统中,还提供了专门的指令来改变标志位DF的值。

三、32位标志寄存器增加的标志位
1、I/O特权标志IOPL(I/O Privilege Level)
I/O特权标志用两位二进制位来表示,也称为I/O特权级字段。该字段指定了要求执行I/O指令的特权级。如果当前的特权级别在数值上小于等于IOPL的值,那么,该I/O指令可执行,否则将发生一个保护异常。

2、嵌套任务标志NT(Nested Task)
嵌套任务标志NT用来控制中断返回指令IRET的执行。具体规定如下:

(1)、当NT=0,用堆栈中保存的值恢复EFLAGS、CS和EIP,执行常规的中断返回操作;

(2)、当NT=1,通过任务转换实现中断返回。

3、重启动标志RF(Restart Flag)
重启动标志RF用来控制是否接受调试故障。规定:RF=0时,表示“接受”调试故障,否则拒绝之。在成功执行完一条指令后,处理机把RF置为0,当接受到一个非调试故障时,处理机就把它置为1,中国自学编程网整理发布!。

4、虚拟8086方式标志VM(Virtual 8086 Mode)
如果该标志的值为1,则表示处理机处于虚拟的8086方式下的工作状态,否则,处理机处于一般保护方式下的工作状态。

80X86寄存器介绍的更多相关文章

  1. 80X86寄存器详解<转载>

    引子 打算写几篇稍近底层或者说是基础的博文,浅要介绍或者说是回顾一些基础知识, 自然,还是得从最基础的开始,那就从汇编语言开刀吧, 从汇编语言开刀的话,我们必须还先要了解一些其他东西, 像  CPU ...

  2. Arm寄存器介绍及汇编基础

    一.ARM处理器支持7种工作模式 ① 用户模式(USR): 用于正常执行程序(The normal ARM program execution state) ② 快速中断模式(FIQ): 用于高速数据 ...

  3. STM32入门系列-存储器与寄存器介绍

    介绍两部分内容: 什么是存储器映射 什么是寄存器及寄存器映射 为了让大家对存储器与寄存器有一个更清楚的认识,并且为之后使用 C 语言来访问 STM32 寄存器内容打下基础.等明白了如何使用 C 语言封 ...

  4. ARM寄存器介绍

    ARM处理器共有37个寄存器.其中包括:31个通用寄存器,包括程序计数器(PC)在内.这些寄存器都是32位寄存器.以及6个32位状态寄存器.但目前只使用了其中12位.ARM处理器共有7种不同的处理器模 ...

  5. modbus 寄存器介绍

    modbus 的查询命令 命令 地址开始(两个地址)     地址长度(两个地址)          检验 01  xx     xx xx                              ...

  6. X86寄存器

    前置知识 x86泛指一系列基于Intel 8086且向后兼容的中央处理器指令集架构.最早的8086处理器于1978年由Intel推出,为16位微处理器. 80X86 包括Intel 8086.8018 ...

  7. 协处理器CP15介绍—MCR/MRC指令(6)

    概述:在基于ARM的嵌入式应用系统中,存储系统的操作通常是由协处理器CP15完成的.CP15包含16个32位的寄存器,其编号为0-15. 而访问CP15寄存器的指令主要是MCR和MRC这两个指令. 例 ...

  8. 大脸猫讲逆向之ARM汇编中PC寄存器详解

    i春秋作家:v4ever 近日,在研究一些开源native层hook方案的实现方式,并据此对ARM汇编层中容易出问题的一些地方做了整理,以便后来人能有从中有所收获并应用于现实问题中.当然,文中许多介绍 ...

  9. 51单片机SRF寄存器

    1.21个寄存器介绍        51系列单片机内部主要有四大功能模块,分别是I/O口模块.中断模块.定时器模块和串口通信模块(串行I/O口),如其结构和功能如下图: 图1 51单片机结构和功能图 ...

随机推荐

  1. JSON劫持漏洞攻防原理及演练

    注* 作者发表这篇文章的时间较早,某些方法可能并不是最好的解决方案,但针对这种漏洞进行的攻击还依然可见,如早期的:QQMail邮件泄露漏洞,下面介绍的是对这种攻击原理的介绍. 不久之前,我写了一篇文章 ...

  2. Gerrit代码审核服务器搭建全过程

    Gerrit代码审核服务器搭建全过程 转载请标明出处:http://blog.csdn.net/ganshuyu/article/details/8978614 环境:Ubuntu12.xx 1.建立 ...

  3. 使用微软提供的Office Online实现Office文档的在线查看,编辑等功能

    使用微软提供的Office Online平台只需要一个网址即可在线查看Xls,doc,PPT等文档 http://view.officeapps.live.com/op/view.aspx?src=要 ...

  4. 30款超酷的HTTP 404页面未找到错误设计

    访问网站过程中,我们最常看到的HTTP错误就是404页面未找到错误,很多网站都针对这个错误设计自己富有个性的页面,在今天这篇文章中我们就分 享30多款设计非常霸道的404错误页面,希望大家能够找到更多 ...

  5. jQuery几个经典表单应用整理回想

    1.文本框获得(失去)焦点 当文本框获得输入焦点时,将该文本框高亮显示,算不得一个应用.仅仅是一个小技巧,能够提高用户体验. [html] view plaincopy <span style= ...

  6. es5 - array - shift

    /** * 描述:该shift()方法从数组中删除第一个元素并返回已删除的元素.此方法更改数组的长度. * 语法:arr.shift() * 返回:该shift方法删除零点索引处的元素并将连续索引处的 ...

  7. JavaWeb 发送get请求

      JavaWeb 发送get请求 CreationTime--2018年6月20日15点27分 Author:Marydon 1.前提 通过HttpClient来实现 2.具体实现 客户端如何发送请 ...

  8. HttpClient设置超时(转)

    HttpClient  4.5版本设置连接超时时间-CloseableHttpClient设置Timeout(区别于4.3.2) HttpClient升级到4.5版本后,API有很多变化,HttpCl ...

  9. Windows 开发之VC++垃圾清理程序软件

    概述 本程序软件的主要实现垃圾文件清理的功能,即对指定的文件格式的临时文件或垃圾文件进行遍历.扫描.显示.删除清理等功能.在程序界面设计方面,对默认对话框重新自定义绘制,主要包括标题栏的重绘.对话框边 ...

  10. 让 sphinx 支持中文、日文和韩文

    在国内搜索 sphinx 的话找到的资源好像都是挺久远的,无奈之下只好跑到国外去找了.听起来有点不可思议,但是最近整 sphinx 的时候突然想到 mediawiki 官方有 sphinx 的安装介绍 ...