QuantStart量化交易文集
Over the last seven years more than 200 quantitative finance articles have been written by members of the QuantStart team, prominent quant finance academics, researchers and industry professionals.
在过去七年中,QuantStart一共发表了200多篇量化金融文章,这些文章的作者包括QS团队成员、优秀的量化金融学者、研究人员和行业专家。
The articles are broadly categorised into Quantitative Trading, Mathematical Finance, Computational Finance and Careers Guidance.
这些文章大体分为量化交易,金融数学,计算金融和职业指导。
Quantitative Trading 量化交易
Getting Started with Quantitative Trading 量化交易起步
- Beginner's Guide to Quantitative Trading 量化交易入门指南
- Can Algorithmic Traders Still Succeed at the Retail Level? 算法交易商仍能在零售层面取得成功吗?
- Top 5 Essential Beginner Books for Algorithmic Trading 算法交易初学者必读的5本书
Building a Quantitative Trading Infrastructure 构建量化交易框架
- Installing a Desktop Algorithmic Trading Research Environment using Ubuntu Linux and Python 搭建桌面算法交易研究环境
- Securities Master Databases for Algorithmic Trading 算法交易中的证券主数据库
- Securities Master Database with MySQL and Python
- Downloading Historical Futures Data From Quandl 从Quandl下载期货历史数据
- Research Backtesting Environments in Python with pandas 使用Python中的pandas研究回测环境
- Continuous Futures Contracts for Backtesting Purposes 用于回测的连续期货合约
- Downloading Historical Intraday US Equities From DTN IQFeed with Python
Backtesting 回测
- Successful Backtesting of Algorithmic Trading Strategies - Part I
- Successful Backtesting of Algorithmic Trading Strategies - Part II
- Best Programming Language for Algorithmic Trading Systems?
- Event-Driven Backtesting with Python - Part I
- Event-Driven Backtesting with Python - Part II
- Event-Driven Backtesting with Python - Part III
- Event-Driven Backtesting with Python - Part IV
- Event-Driven Backtesting with Python - Part V
- Event-Driven Backtesting with Python - Part VI
- Event-Driven Backtesting with Python - Part VII
- Event-Driven Backtesting with Python - Part VIII
- Should You Build Your Own Backtester?
- Backtesting Systematic Trading Strategies in Python: Considerations and Open Source Frameworks
Risk and Performance Measurement 风险与性能度量
- Sharpe Ratio for Algorithmic Trading Performance Measurement
- Money Management via the Kelly Criterion
- Value at Risk (VaR) for Algorithmic Trading Risk Management - Part I
- Annualised Rolling Sharpe Ratio in QSTrader
Automated Execution 自动执行
- Interactive Brokers Demo Account Signup Tutorial
- Using Python, IBPy and the Interactive Brokers API to Automate Trades
- Choosing a Platform for Backtesting and Automated Execution
Quantitative Trading Strategies 量化交易策略
- How to Identify Algorithmic Trading Strategies
- Backtesting a Moving Average Crossover in Python with pandas
- Backtesting a Forecasting Strategy for the S&P500 in Python with pandas
- Backtesting An Intraday Mean Reversion Pairs Strategy Between SPY And IWM
- ARIMA+GARCH Trading Strategy on the S&P500 Stock Market Index Using R
- Kalman Filter-Based Pairs Trading Strategy In QSTrader
- Monthly Rebalancing of ETFs with Fixed Initial Weights in QSTrader
- Strategic and Equal Weighted ETF Portfolios in QSTrader
- Aluminum Smelting Cointegration Strategy in QSTrader
- Sentiment Analysis Trading Strategy via Sentdex Data in QSTrader
- Market Regime Detection using Hidden Markov Models in QSTrader
Quant Funds and Institutional Management 量化基金和机构管理
Talks and Interviews 对话与访谈
- My Interview Over At OneStepRemoved.com
- My Talk At The London Financial Python User Group
- My Chat With Traders Interview with Aaron Fifield
- When Should You Build Your Own Backtester? - QuantCon NYC, April 2016 talk
QSTrader QS交易员
- Announcing the QuantStart Advanced Trading Infrastructure Article Series
- Advanced Trading Infrastructure - Position Class
- Advanced Trading Infrastructure - Portfolio Class
- Advanced Trading Infrastructure - Portfolio Handler Class
Forex Trading Diary 外汇交易日记
- Forex Trading Diary #1 - Automated Forex Trading with the OANDA API
- Forex Trading Diary #2 - Adding a Portfolio to the OANDA Automated Trading System
- Forex Trading Diary #3 - Open Sourcing the Forex Trading System
- Forex Trading Diary #4 - Adding a Backtesting Capability
- Forex Trading Diary #5 - Trading Multiple Currency Pairs
- Forex Trading Diary #6 - Multi-Day Trading and Plotting Results
- Forex Trading Diary #7 - New Backtest Interface
Careers Advice 职业咨询
Life as a Quant 宽客人生
- Understanding How to Become a Quantitative Analyst
- What are the Different Types of Quantitative Analysts?
- My Experiences as a Quantitative Developer in a Hedge Fund
- A Day in the Life of a Quantitative Developer
- Careers in Quantitative Finance
- What are the Career Paths in Systematic Trading?
- Setting up an Algorithmic Trading Business
Undergraduates 大学生
- What Classes Should You Take To Become a Quantitative Analyst?
- Why Study for a Mathematical Finance PhD?
- Why a Masters in Finance Won't Make You a Quant Trader
- Best Undergraduate Degree Course For Becoming A Quant?
- The Top 5 UK Universities For Becoming A Quant
- How to Learn Advanced Mathematics Without Heading to University - Part 1
- How to Learn Advanced Mathematics Without Heading to University - Part 2
- How to Learn Advanced Mathematics Without Heading to University - Part 3
Postgraduates 研究生
- Junior Quant Jobs - Beginning a Career in Financial Engineering after a PhD
- How To Get A Quant Job Once You Have A PhD
- Getting a Job in a Top Tier Quant Hedge Fund
- How to Get a Job at a High Frequency Trading Firm
- Which Programming Language Should You Learn To Get A Quant Developer Job?
Career Changers 转行
- Can You Still Become a Quant in Your Thirties?
- Self-Study Plan for Becoming a Quantitative Trader - Part I
- Self-Study Plan for Becoming a Quantitative Trader - Part II
- Self-Study Plan for Becoming a Quantitative Developer
- Self-Study Plan for Becoming a Quantitative Analyst
- Mailbag: Can You Get A Job In HFT Without A Degree?
- Quant Finance Career Skills - What Are Employers Looking For?
Quant Reading Lists 量化阅读列表
- Quant Reading List Derivative Pricing
- Quant Reading List C++ Programming
- Quant Reading List Numerical Methods
- Quant Reading List Python Programming
- 5 Important But Not So Common Books A Quant Should Read Before Applying for a Job
- 5 Top Books for Acing a Quantitative Analyst Interview
- Top 5 Finite Difference Methods books for Quant Analysts
- Top 5 Essential Beginner C++ Books for Financial Engineers
- Quantitative Finance Reading List
- Top 10 Essential Resources for Learning Financial Econometrics
- Free Quantitative Finance Resources
- Top 5 Essential Books for Python Machine Learning
Mathematics 数学
Linear Algebra 线性代数
- Scalars, Vectors, Matrices and Tensors - Linear Algebra for Deep Learning (Part 1)
- Matrix Algebra - Linear Algebra for Deep Learning (Part 2)
Bayesian Statistics 贝叶斯统计
- Bayesian Statistics: A Beginner's Guide
- Bayesian Inference of a Binomial Proportion - The Analytical Approach
- Markov Chain Monte Carlo for Bayesian Inference - The Metropolis Algorithm
- Bayesian Linear Regression Models with PyMC3
Machine Learning 机器学习
- Basics of Statistical Mean Reversion Testing
- Basics of Statistical Mean Reversion Testing - Part II
- Forecasting Financial Time Series - Part I
- Beginner's Guide to Statistical Machine Learning - Part I
- Support Vector Machines: A Guide for Beginners
- Supervised Learning for Document Classification with Scikit-Learn
- The Bias-Variance Tradeoff in Statistical Machine Learning - The Regression Setting
- Using Cross-Validation to Optimise a Machine Learning Method - The Regression Setting
- Beginner's Guide to Unsupervised Learning
- Beginner's Guide to Decision Trees for Supervised Machine Learning
- Maximum Likelihood Estimation for Linear Regression
- Bootstrap Aggregation, Random Forests and Boosted Trees
- K-Means Clustering of Daily OHLC Bar Data
Rough Path Theory 拉夫路径理论
- Rough Path Theory and Signatures Applied To Quantitative Finance - Part 1
- Rough Path Theory and Signatures Applied To Quantitative Finance - Part 2
- Rough Path Theory and Signatures Applied To Quantitative Finance - Part 3
- Rough Path Theory and Signatures Applied To Quantitative Finance - Part 4
Deep Learning 深度学习
- Deep Learning with Theano - Part 1: Logistic Regression
- What is Deep Learning?
- Should You Buy or Rent a GPU-Based Deep Learning Machine for Quant Trading Research?
Time Series Analysis 时间序列分析
- Beginner's Guide to Time Series Analysis
- Serial Correlation in Time Series Analysis
- White Noise and Random Walks in Time Series Analysis
- Autoregressive Moving Average ARMA(p, q) Models for Time Series Analysis - Part 1
- Autoregressive Moving Average ARMA(p, q) Models for Time Series Analysis - Part 2
- Autoregressive Moving Average ARMA(p, q) Models for Time Series Analysis - Part 3
- Autoregressive Integrated Moving Average ARIMA(p, d, q) Models for Time Series Analysis
- Generalised Autoregressive Conditional Heteroskedasticity GARCH(p, q) Models for Time Series Analysis
- State Space Models and the Kalman Filter
- Dynamic Hedge Ratio Between ETF Pairs Using the Kalman Filter
- Cointegrated Time Series Analysis for Mean Reversion Trading with R
- Cointegrated Augmented Dickey Fuller Test for Pairs Trading Evaluation in R
- Johansen Test for Cointegrating Time Series Analysis in R
- Hidden Markov Models - An Introduction
- Hidden Markov Models for Regime Detection using R
Derivatives Pricing 衍生品定价
The Binomial Model 二叉树模型
- Introduction to Option Pricing with Binomial Trees
- Hedging the sale of a Call Option with a Two-State Tree
- Risk Neutral Pricing of a Call Option with a Two-State Tree
- Replication Pricing of a Call Option with a One-Step Binomial Tree
- Multinomial Trees and Incomplete Markets
- Pricing a Call Option with Two Time-Step Binomial Trees
- Pricing a Call Option with Multi-Step Binomial Trees
- Derivative Pricing with a Normal Model via a Multi-Step Binomial Tree
- Risk Neutral Pricing of a Call Option with Binomial Trees with Non-Zero Interest Rates
Stochastic Calculus 随机计算
- Introduction to Stochastic Calculus
- The Markov and Martingale Properties
- Brownian Motion and the Wiener Process
- Stochastic Differential Equations
- Geometric Brownian Motion
- Ito's Lemma
- Deriving the Black-Scholes Equation
Numerical PDE 偏微分方程
- Derivative Approximation via Finite Difference Methods
- Solving the Diffusion Equation Explicitly
- Crank-Nicholson Implicit Scheme
- Tridiagonal Matrix Solver via Thomas Algorithm
Black-Scholes Model 布莱克-舒尔斯期权定价模型
- Derivatives Pricing I: Pricing under the Black-Scholes model
- Derivatives Pricing II: Volatility Is Rough
C++ Implementation C++实现
C++ Language C++语言
- C++ Virtual Destructors: How to Avoid Memory Leaks
- Passing By Reference To Const in C++
- Mathematical Constants in C++
- STL Containers and Auto_ptrs - Why They Don't Mix
- Function Objects ("Functors") in C++ - Part 1
- C++ Standard Template Library Part I - Containers
- C++ Standard Template Library Part II - Iterators
- C++ Standard Template Library Part III - Algorithms
- What's New in the C++11 Standard Template Library?
Numerical Methods in C++
- Tridiagonal Matrix Algorithm ("Thomas Algorithm") in C++
- Matrix Classes in C++ - The Header File
- Matrix Classes in C++ - The Source File
- Statistical Distributions in C++
- Random Number Generation via Linear Congruential Generators in C++
- Eigen Library for Matrix Algebra in C++
Derivatives Pricing with C++
- European vanilla option pricing with C++ and analytic formulae
- European vanilla option pricing with C++ via Monte Carlo methods
- Digital option pricing with C++ via Monte Carlo methods
- Double digital option pricing with C++ via Monte Carlo methods
- Asian option pricing with C++ via Monte Carlo Methods
- Floating Strike Lookback Option Pricing with C++ via Analytic Formulae
- C++ Explicit Euler Finite Difference Method for Black Scholes
- Generating Correlated Asset Paths in C++ via Monte Carlo
- Implied Volatility in C++ using Template Functions and Interval Bisection
- Implied Volatility in C++ using Template Functions and Newton-Raphson
- Heston Stochastic Volatility Model with Euler Discretisation in C++
- Jump-Diffusion Models for European Options Pricing in C++
- Calculating the Greeks with Finite Difference and Monte Carlo Methods in C++
GPU/CUDA Programming in C++
- Installing Nvidia CUDA on Mac OSX for GPU-Based Parallel Computing
- Vector Addition "Hello World!" Example with CUDA on Mac OSX
- Installing Nvidia CUDA on Ubuntu 14.04 for Linux GPU Computing
- dev_array: A Useful Array Class for CUDA
- Monte Carlo Simulations In CUDA - Barrier Option Pricing
- Matrix-Matrix Multiplication on the GPU with Nvidia CUDA
Python Implementation Python实现
- Options Pricing in Python
- European Vanilla Call-Put Option Pricing with Python
- LU Decomposition in Python and NumPy
- Cholesky Decomposition in Python and NumPy
- QR Decomposition with Python and NumPy
- Jacobi Method in Python and NumPy
- Parallelising Python with Threading and Multiprocessing
- Quick-Start Python Quantitative Research Environment on Ubuntu 14.04
- Easy Multi-Platform Installation of a Scientific Python Stack Using Anaconda
Quantstart
- QuantStart: 2014 in Review
- Announcement: Speaking at QuantCon in April 2016
- How to Write a Great Quant Blog
- QuantStart April 2016 News
- Advanced Algorithmic Trading and QSTrader Updates
- Advanced Algorithmic Trading and QSTrader - Second Update
- QuantStart Events in October and November 2016
- QuantStart New York City October 2016 Trip Report
- Advanced Algorithmic Trading and QSTrader - Fourth Update
- QuantStart Gets a Makeover
- QuantStart Singapore November 2016 Trip Report
- Advanced Algorithmic Trading and QSTrader - Fifth Update
- QuantStart Upcoming Content Survey 2017
QuantStart量化交易文集的更多相关文章
- 3. 量化交易策略 - https://github.com/3123958139/blog-3123958139/README.md
3. 量化交易策略 * 输入数据 - 只取最原始可靠的,如 * date * open * high * low * close * volume * 输出数据 - 根据数理统计取权重,把 o, h, ...
- 深度神经网络在量化交易里的应用 之二 -- 用深度网络(LSTM)预测5日收盘价格
距离上一篇文章,正好两个星期. 这边文章9月15日 16:30 开始写. 可能几个小时后就写完了.用一句粗俗的话说, "当你怀孕的时候,别人都知道你怀孕了, 但不知道你被日了多少回 ...
- 【LSGDOJ1836】: 量化交易 贪心
题目描述 applepi 训练了一个可以自动在股票市场进行量化交易的模型.通常来说,applepi 写出的模型,你懂得,就好比一架印钞机.不过为了谨慎起见,applepi还是想先检查一下模型的效果.a ...
- python做量化交易干货分享
http://www.newsmth.NET/nForum/#!article/Python/128763 最近程序化交易很热,量化也是我很感兴趣的一块. 国内量化交易的平台有几家,我个人比较喜欢用的 ...
- Python量化交易
资料整理: 1.python量化的一个github 代码 2.原理 + python基础 讲解 3.目前发现不错的两个量化交易 学习平台: 聚宽和优矿在量化交易都是在15年线上布局的,聚宽是15年的新 ...
- 金融量化分析【day112】:初识量化交易
一.摘要 为什么需要量化交易? 量化交易是做什么? 量化交易的价值何在? 做量化交易需要什么? 聚宽是什么? 零基础如何快速入门量化交易? 自测与自学 二.量化交易比传统交易强多少? 它能让你的交易效 ...
- 金融量化分析【day112】:量化交易策略基本框架
摘要 策略编写的基本框架及其实现 回测的含义及其实现 初步学习解决代码错误 周期循环的开始时间 自测与自学 通过前文对量化交易有了一个基本认识之后,我们开始学习做量化交易.毕竟就像学游泳,有些东西讲是 ...
- zw量化交易·实盘操作·系列培训班
参见: <zw量化交易·实盘操作·系列培训班> http://blog.sina.com.cn/s/blog_7100d4220102w0q5.html
- Python进阶量化交易专栏场外篇7- 装饰器计算代码时间
欢迎大家订阅<教你用 Python 进阶量化交易>专栏!为了能够提供给大家更轻松的学习过程,笔者在专栏内容之外已陆续推出一些手记来辅助同学们学习本专栏内容,目前已推出如下扩展篇: 在第一篇 ...
随机推荐
- loadrunner录制成功但脚本内容为空,无任何代码//脚本中包含乱码
使用loadrunner录制脚本,录制过程中也会显示“正在录制…”,并且有(XX个事件).但是脚本录制结束之后,脚本中没有任何内容,没有代码显示. 解决方法: 在脚本录制程序VU generator中 ...
- [转]JavaScript放在<head>和<body>的区别
原文:http://liminhappygirl.iteye.com/blog/1841360 javaScript放在<head>和<body>的区别: 在HTML body ...
- 将多个文件夹内的txt合并
import os import re def text_create(name): """ 创建txt文件夹 """ desktop_pa ...
- Git和Repo管理使用简要介绍
在Linux平台下进行Android系统项目开发时,需要Git或repo管理. 一. Git和Repo的区别: 1. Git:Git是一个开源的分布式版本控制系统,用以有效.高速的处理从很小到非常大的 ...
- php读取csv的问题
csv文件要用utf-8 无bom格式保存 如果有英文外的字符,另外每项要用双引号,不用双引号不能保存非英文字符
- java ssm框架入门(三)正式项目的web.xml配置
一个正规的上线的web.xml的配置. <?xml version="1.0" encoding="UTF-8"?> <web-app id= ...
- per-cpu
What is percpu data? percpu data 是内核为smp系统中不同CPU之间的数据保护方式,系统为每个CPU维护一段私有的空间,在这段空间中的数据只有这个CPU能访问.但是这种 ...
- 重启php
注意这是重启php,不是重启apache service php-fpm restart
- 原生js怎么删除一个 div
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- Math - Uva 11300 Spreading the Wealth
Spreading the Wealth Problem's Link ---------------------------------------------------------------- ...