manacher 算法 这个人确实写得太好了;
O(n)回文子串(Manacher)算法
资料来源网络 参见:http://www.felix021.com/blog/read.php?2040
问题描述:
输入一个字符串,求出其中最大的回文子串。子串的含义是:在原串中连续出现的字符串片段。回文的含义是:正着看和倒着看相同,如abba和yyxyy。
解析:
这里介绍O(n)回文子串(Manacher)算法
算法基本要点:首先用一个非常巧妙的方式,将所有可能的奇数/偶数长度的回文子串都转换成了奇数长度:在每个字符的两边都插入一个特殊的符号。比如 abba 变成 #a#b#b#a#, aba变成 #a#b#a#。 为了进一步减少编码的复杂度,可以在字符串的开始加入另一个特殊字符,这样就不用特殊处理越界问题,比如$#a#b#a#。
下面以字符串12212321为例,经过上一步,变成了 S[] = "$#1#2#2#1#2#3#2#1#";
然后用一个数组 P[i] 来记录以字符S[i]为中心的最长回文子串向左/右扩张的长度(包括S[i]),比如S和P的对应关系:
S # 1 # 2 # 2 # 1 # 2 # 3 # 2 # 1 #
P 1 2 1 2 5 2 1 4 1 2 1 6 1 2 1 2 1
(p.s. 可以看出,P[i]-1正好是原字符串中回文串的总长度)
下面计算P[i],该算法增加两个辅助变量id和mx,其中id表示最大回文子串中心的位置,mx则为id+P[id],也就是最大回文子串的边界。
这个算法的关键点就在这里了:如果mx > i,那么P[i] >= MIN(P[2 * id - i], mx - i)。
具体代码如下:
if(mx > i)
{
p[i] = (p[2*id - i] < (mx - i) ? p[2*id - i] : (mx - i));
}
else
{
p[i] = 1;
}
当 mx - i > P[j] 的时候,以S[j]为中心的回文子串包含在以S[id]为中心的回文子串中,由于 i 和 j 对称,以S[i]为中心的回文子串必然包含在以S[id]为中心的回文子串中,所以必有 P[i] = P[j],见下图。
当 P[j] > mx - i 的时候,以S[j]为中心的回文子串不完全包含于以S[id]为中心的回文子串中,但是基于对称性可知,下图中两个绿框所包围的部分是相同的,也就是说以S[i]为中心的回文子串,其向右至少会扩张到mx的位置,也就是说 P[i] >= mx - i。至于mx之后的部分是否对称,就只能一个一个匹配了。
对于 mx <= i 的情况,无法对 P[i]做更多的假设,只能P[i] = 1,然后再去匹配了
下面给出原文,进一步解释算法为线性的原因
源代码:
#include <iostream>
#include <string>
#include <cstring> using namespace std; void findBMstr(string str)
{
int *p = new int[str.size() + 1];
memset(p, 0, sizeof(p)); int mx = 0, id = 0;
for(int i = 1; i <= str.size(); i++)
{
if(mx > i)
{
p[i] = (p[2*id - i] < (mx - i) ? p[2*id - i] : (mx - i));
}
else
{
p[i] = 1;
} while(str[i - p[i]] == str[i + p[i]])
p[i]++; if(i + p[i] > mx)
{
mx = i + p[i];
id = i;
} }
int max = 0, ii;
for(int i = 1; i < str.size(); i++)
{
if(p[i] > max)
{
ii = i;
max = p[i];
}
} max--; int start = ii - max ;
int end = ii + max;
for(int i = start; i <= end; i++)
{
if(str[i] != '#')
{
cout << str[i];
}
}
cout << endl; delete p;
} int main()
{
string str = "12212321";
string str0;
str0 += "$#";
for(int i = 0; i < str.size(); i++)
{
str0 += str[i];
str0 += "#";
} cout << str0 << endl;
findBMstr(str0);
return 0;
}
manacher 算法 这个人确实写得太好了;的更多相关文章
- HDU4513吉哥系列故事――完美队形II(manacher算法)
这个比最长回文子串就多了一个条件,就是回文字串(这里相当于人的高度)由两端向中间递增. 才刚刚看了看manacher,在用模板A了一道题后,还没有完全理解manacher,然后就准备把这道题也直接带模 ...
- Hash 算法与 Manacher 算法
目录 前言 简单介绍 简述 Hash 冲突 离散化 基本结构 普通 Hash 简述 例题 字符串 Hash 简单介绍 核心思想 基本运算 二维字符串 Hash 例题 兔子与兔子 回文子串的最大长度 后 ...
- 【转】最长回文子串的O(n)的Manacher算法
Manacher算法 首先:大家都知道什么叫回文串吧,这个算法要解决的就是一个字符串中最长的回文子串有多长.这个算法可以在O(n)的时间复杂度内既线性时间复杂度的情况下,求出以每个字符为中心的最长回文 ...
- manacher算法(转载)
原网址:http://blog.sina.com.cn/s/blog_70811e1a01014esn.html manacher算法是我在网上无意中找到的,主要是用来求某个字符串的最长回文子串.不过 ...
- [转]O(n)回文子串算法 Manacher算法
这里,我介绍一下O(n)回文串处理的一种方法.Manacher算法.原文地址:http://zhuhongcheng.wordpress.com/2009/08/02/a-simple-linear- ...
- HDU3068 最长回文 Manacher算法
Manacher算法是O(n)求最长回文子串的算法,其原理很多别的博客都有介绍,代码用的是clj模板里的,写的确实是异常的简洁,现在的我只能理解个大概,下面这个网址的介绍比较接近于这个模板,以后再好好 ...
- hdu_3068 最长回文(Manacher算法)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3068 最长回文 Time Limit: 4000/2000 MS (Java/Others) M ...
- TCP/IP详解学习笔记 这位仁兄写得太好了.(转载)
TCP/IP详解学习笔记 这位仁兄写得太好了 TCP/IP详解学习笔记 这位仁兄写得太好了. http://blog.csdn.net/goodboy1881/category/20444 ...
- 并不对劲的manacher算法
有些时候,后缀自动机并不能解决某些问题,或者解决很麻烦.这时就有各种神奇的字符串算法了. manacher算法用来O(|S|)地求出字符串S的最长的回文子串的长度.这是怎么做到的呢? 并不对劲的暴力选 ...
随机推荐
- 数据库还原,System.Data.SqlClient.SqlError: 因为数据库正在使用,所以无法获得对数据库的独占访问权。 (Microsoft.SqlServer.SmoExtended)
数据库还原问题: System.Data.SqlClient.SqlError: 因为数据库正在使用,所以无法获得对数据库的独占访问权. (Microsoft.SqlServer.SmoExtende ...
- jquery 报错 $.cookie is not a function()
jquery 报错 $.cookie is not a function() ——我是之前可以运行的项目,突然报这个错误,很奇怪. 这是jquery的cookie插件报错. 插件名: jquery.c ...
- HDU 5773 The All-purpose Zero(O(nlgn)求LIS)
http://acm.hdu.edu.cn/showproblem.php?pid=5773 题意: 求LIS,其中的0可以看做任何数. 思路: 因为0可以看做任何数,所以我们可以先不管0,先求一遍L ...
- django框架搭建web服务
一.工具 环境:windows 7 python 2.7.7 下载地址:https://www.python.org/downloads/release/python-2713/ ps:这 ...
- Git 设置 SOCKS 代理
$ export all_proxy=socks5://127.0.0.1:1080
- java23种设计模式之二: 单例设计模式(6种写法)
目的:在某些业务场景中,我们需要某个类的实例对象的只能有一个,因此我们需要创建一些单例对象. 本文共有6种写法,仅供参考 1.饿汉式 优点: 在多线程情况下,该方法创建的单例是线程安全的(立即加载) ...
- 从源码角度分析 Kotlin by lazy 的实现
by lazy 的作用 延迟属性(lazy properties) 是 Kotlin 标准库中的标准委托之一,可以通过 by lazy 来实现. 其中,lazy() 是一个函数,可以接受一个 Lamb ...
- 在阿里云服务器上搭建 Apache Tomat 应用
在阿里云上购买一台服务器,系统采用 window 2008 Server 企业版,64位 1.下载Java7 JRE,安装 http://www.java.com/zh_CN/download/man ...
- Python 排序---sort与sorted学习
当我们从数据库中获取一写数据后,一般对于列表的排序是经常会遇到的问题,今天总结一下python对于列表list排序的常用方法: 第一种:内建方法sort() 可以直接对列表进行排序 用法: list. ...
- 奇怪的表达式求值 (java实现)
题目参考:http://blog.csdn.net/fuxuemingzhu/article/details/68484749 问题描述; 题目描述: 常规的表达式求值,我们都会根据计算的优先级来计算 ...