图:centrality
【定义】Centrality:图中每个节点v的相对重要度c(v),重要度是什么可根据具体应用定义。
【估计方法】
Degree centrality
Betweenness centrality
Closeness centrality
Eigenvector centrality
PageRank及其他
通常,Centrality的估计有几种方法:
1. Degree centrality
计算公式:C(v)=degree(v)
备注:节点v处的边数直接作为centrality,若边是有向的,则可以有两个c(v)的定义:入度数和出度数
此定义也可视为到v距离为1的所有路径长度。
2. Betweenness centrality(Freeman Linton, 1977)
计算公式:C(v)=图中所有除节点v外的节点对之间经过v的最短路径数/图中所有除节点v外的节点对之间所有的最短路径数;
备注:衡量v作为路由器的功率。
计算复杂度:
1)Floyd-Warshall algorithm(也称Floyd’s algorithm, Roy-Warshall algorithm, Roy-Floyd algorithm, WFI algorithm,基于动态规划的计算任意两点间最短路径的算法,也可用于计算有向图的传递闭包),平均复杂度为theta(|V|^3),|V|为图中节点总数。
2)Johnson’s algorithm,也是计算最短路径的算法,在稀疏图中(有向、有边权),最坏情况下,O(|V|^2*Log|V|+|V|*|E|)
3)Brandes' algorithm (a faster algorithm for betweenness centrality, 2001), 在无权重(同权重)的图上,最坏情况下O(|V|*|E|)
3. Closeness centrality(Freeman, 1978; Opsahl et al., 2010; Wasserman and Faust, 1994)
计算公式:从v到所有其他节点的最短距离和的倒数。
备注1:这个centrality只能用于连通图,非联通图上会出现无穷大,然后所有节点的centrality都是0;
备注2:这个centrality可用于衡量一个节点将信息传播到其他节点的时间或者花费,能用来寻找图中的community leader。
修正1:Dangalchev(2006)对上述定义做了修正,将v到其他节点t的最短距离d(v,t)修正为2^(-d(v,t)),然后对除v之外的所有节点t的该值求和,作为centrality,使之能够用到非联通图上。
修正2:Opsahl(2010)和Boldi and Vigna(2013)做了另外一个修正,使得其能用到非联通图上,原来的定义中先对最短距离求和,然后求倒数,该修正中反过来,先对到每个节点的距离求倒数,在对倒数求和,作为cnetrality。
4. Eigenvector centrality
5. PageRank及其他
图:centrality的更多相关文章
- graph-tool文档(一)- 快速开始使用Graph-tool - 3.图的过滤
目录: 图的过滤 图视图 -- 组合图视图 名词解释: filter:过滤 mask:屏蔽 inverted parameter:倒参数 overhead:开销 minimum spanning tr ...
- Social Network Analysis的Centrality总结,以及networkx实现EigenCentrality,PageRank和KatzCentrality的对比
本文主要总结近期学习的Social Network Analysis(SNA)中的各种Centrality度量,我暂且翻译为中心度.本文主要是实战,理论方面几乎没有,因为对于庞大的SNA,我可能连门都 ...
- 关系网络理论︱细讲中介中心性(Betweeness Centrality)
关系网络在我认为都是一种很简单暴力地能挖掘人群特征关系的一种方式,特别今天去听了一场关于AI与金融领域的结合,里面提到了拓扑分析其实就是关系网络的解释.我在之前的文章( R语言︱SNA-社会关系网络- ...
- 图数据库-Neo4j-常用算法
本次主要学习图数据库中常用到的一些算法,以及如何在Neo4j中调用,所以这一篇偏实战,每个算法的原理就简单的提一下. 1. 图数据库中常用的算法 PathFinding & Search 一般 ...
- 关于图算法 & 图分析的基础知识概览
网址:https://learning.oreilly.com/library/view/graph-algorithms-/9781492060116/ 你肯定没有读过这本书,因为这本书的发布日期是 ...
- 【图机器学习】cs224w Lecture 15 - 网络演变
目录 Macroscopic Forest Fire Model Microscopic Temporal Network Temporal PageRank Mesoscopic 转自本人:http ...
- 图计算 on nLive:Nebula 的图计算实践
本文首发于 Nebula Graph Community 公众号 在 #图计算 on nLive# 直播活动中,来自 Nebula 研发团队的 nebula-plato 维护者郝彤和 nebula-a ...
- 图数据库|基于 Nebula Graph 的 BetweennessCentrality 算法
本文首发于 Nebula Graph Community 公众号 在图论中,介数(Betweenness)反应节点在整个网络中的作用和影响力.而本文主要介绍如何基于 Nebula Graph 图数据 ...
- 关于图计算&图学习的基础知识概览:前置知识点学习(Paddle Graph Learning (PGL))
关于图计算&图学习的基础知识概览:前置知识点学习(Paddle Graph Learning (PGL)) 欢迎fork本项目原始链接:关于图计算&图学习的基础知识概览:前置知识点学习 ...
随机推荐
- POJ 3784 Running Median(动态维护中位数)
Description For this problem, you will write a program that reads in a sequence of 32-bit signed int ...
- VK Cup 2015 - Qualification Round 1 D. Closest Equals 离线+线段树
题目链接: http://codeforces.com/problemset/problem/522/D D. Closest Equals time limit per test3 secondsm ...
- 周总结<2>
本打算在这周日写周总结的,但由于事情太多,还要组织团日活动,所以没时间写.不过上周主要是一些书本上的学习,但是在周日的时候完成了一款小游戏还是比较有成就感的,但是主要是因为html的考试才去做的. 代 ...
- 201621123037 《Java程序设计》第10周学习总结
作业10-异常 标签(空格分隔): Java 1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结异常相关内容. 2. 书面作业 本次PTA作业题集异常 1. 常用异常 结合题集题目7 ...
- 201621123037 《Java程序设计》第7周学习总结
作业06-接口.内部类 1. 本周学习总结 以你喜欢的方式(思维导图或其他)归纳总结集合相关内容. 答: 思维导图: 其他-笔记: 2. 书面作业 1. ArrayList代码分析 1.1 解释Arr ...
- CCF——数位之和201512-1
问题描述 给定一个十进制整数n,输出n的各位数字之和. 输入格式 输入一个整数n. 输出格式 输出一个整数,表示答案. 样例输入 20151220 样例输出 13 样例说明 20151220的各位数字 ...
- php对二维数组排序
function my_sort($arrays,$sort_key,$sort_order=SORT_DESC,$sort_type=SORT_NUMERIC ){ if(is_array($arr ...
- 10个linux网络和监控命令
我下面列出来的10个基础的每个linux用户都应该知道的网络和监控命令.网络和监控命令类似于这些: hostname, ping, ifconfig, iwconfig, netstat, nsloo ...
- 【Linux笔记】阿里云服务器被暴力破解
一.关于暴力破解 前几天新购进了一台阿里云服务器,使用过程中时常会收到“主机被暴力破解”的警告,警告信息如下: 云盾用户您好!您的主机:... 正在被暴力破解,系统已自动启动破解保护.详情请登录htt ...
- 第160天:Http协议的详细总结
一.HTTP协议 超文本传输协议(HyperText Transfer Protocol),缩写HTTP.通过HTTP或者HTTPS协议请求的资源由统一资源标识符(Uniform Resource I ...