Python的并发编程
我们将一个正在运行的程序称为进程。每个进程都有它自己的系统状态,包含内存状态、打开文件列表、追踪指令执行情况的程序指针以及一个保存局部变量的调用栈。通常情况下,一个进程依照一个单序列控制流顺序执行,这个控制流被称为该进程的主线程。在任何给定的时刻,一个程序只做一件事情。
一个程序可以通过Python库函数中的os或subprocess模块创建新进程(例如os.fork()或是subprocess.Popen())。然而,这些被称为子进程的进程却是独立运行的,它们有各自独立的系统状态以及主线程。因为进程之间是相互独立的,因此它们同原有的进程并发执行。这是指原进程可以在创建子进程后去执行其它工作。
虽然进程之间是相互独立的,但是它们能够通过名为进程间通信(IPC)的机制进行相互通信。一个典型的模式是基于消息传递,可以将其简单地理解为一个纯字节的缓冲区,而send()或recv()操作原语可以通过诸如管道(pipe)或是网络套接字(network socket)等I/O通道传输或接收消息。还有一些IPC模式可以通过内存映射(memory-mapped)机制完成(例如mmap模块),通过内存映射,进程可以在内存中创建共享区域,而对这些区域的修改对所有的进程可见。
多进程能够被用于需要同时执行多个任务的场景,由不同的进程负责任务的不同部分。然而,另一种将工作细分到任务的方法是使用线程。同进程类似,线程也有其自己的控制流以及执行栈,但线程在创建它的进程之内运行,分享其父进程的所有数据和系统资源。当应用需要完成并发任务的时候线程是很有用的,但是潜在的问题是任务间必须分享大量的系统状态。
当使用多进程或多线程时,操作系统负责调度。这是通过给每个进程(或线程)一个很小的时间片并且在所有活动任务之间快速循环切换来实现的,这个过程将CPU时间分割为小片段分给各个任务。例如,如果你的系统中有10个活跃的进程正在执行,操作系统将会适当的将十分之一的CPU时间分配给每个进程并且循环地在十个进程之间切换。当系统不止有一个CPU核时,操作系统能够将进程调度到不同的CPU核上,保持系统负载平均以实现并行执行。
利用并发执行机制写的程序需要考虑一些复杂的问题。复杂性的主要来源是关于同步和共享数据的问题。通常情况下,多个任务同时试图更新同一个数据结构会造成脏数据和程序状态不一致的问题(正式的说法是资源竞争的问题)。为了解决这个问题,需要使用互斥锁或是其他相似的同步原语来标识并保护程序中的关键部分。举个例子,如果多个不同的线程正在试图同时向同一个文件写入数据,那么你需要一个互斥锁使这些写操作依次执行,当一个线程在写入时,其他线程必须等待直到当前线程释放这个资源。
Python中的并发编程
Python长久以来一直支持不同方式的并发编程,包括线程、子进程以及其他利用生成器(generator function)的并发实现。
Python在大部分系统上同时支持消息传递和基于线程的并发编程机制。虽然大部分程序员对线程接口更为熟悉,但是Python的线程机制却有着诸多的限制。Python使用了内部全局解释器锁(GIL)来保证线程安全,GIL同时只允许一个线程执行。这使得Python程序就算在多核系统上也只能在单个处理器上运行。Python界关于GIL的争论尽管很多,但在可预见的未来却没有将其移除的可能。
Python提供了一些很精巧的工具用于管理基于线程和进程的并发操作。即使是简单地程序也能够使用这些工具使得任务并发进行从而加快运行速度。subprocess模块为子进程的创建和通信提供了API。这特别适合运行与文本相关的程序,因为这些API支持通过新进程的标准输入输出通道传送数据。signal模块将UNIX系统的信号量机制暴露给用户,用以在进程之间传递事件信息。信号是异步处理的,通常有信号到来时会中断程序当前的工作。信号机制能够实现粗粒度的消息传递系统,但是有其他更可靠的进程内通讯技术能够传递更复杂的消息。threading模块为并发操作提供了一系列高级的,面向对象的API。Thread对象们在一个进程内并发地运行,分享内存资源。使用线程能够更好地扩展I/O密集型的任务。multiprocessing模块同threading模块类似,不过它提供了对于进程的操作。每个进程类是真实的操作系统进程,并且没有共享内存资源,但multiprocessing模块提供了进程间共享数据以及传递消息的机制。通常情况下,将基于线程的程序改为基于进程的很简单,只需要修改一些import声明即可。
Threading模块示例
以threading模块为例,思考这样一个简单的问题:如何使用分段并行的方式完成一个大数的累加。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
import threading
class SummingThread(threading.Thread):
def __init__(self, low, high):
super(SummingThread, self).__init__()
self.low = low
self.high = high
self.total = 0
def run(self):
for i in range(self.low, self.high):
self.total += i
thread1 = SummingThread(0, 500000)
thread2 = SummingThread(500000, 1000000)
thread1.start() # This actually causes the thread to run
thread2.start()
thread1.join() # This waits until the thread has completed
thread2.join()
# At this point, both threads have completed
result = thread1.total + thread2.total
print(result)
|
自定义Threading类库
我写了一个易于使用threads的小型Python类库,包含了一些有用的类和函数。
关键参数:
* do_threaded_work – 该函数将一系列给定的任务分配给对应的处理函数(分配顺序不确定)
* ThreadedWorker – 该类创建一个线程,它将从一个同步的工作队列中拉取工作任务并将处理结果写入同步结果队列
* start_logging_with_thread_info – 将线程id写入所有日志消息。(依赖日志环境)
* stop_logging_with_thread_info – 用于将线程id从所有的日志消息中移除。(依赖日志环境)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
|
import threading
import logging
def do_threaded_work(work_items, work_func, num_threads=None, per_sync_timeout=1, preserve_result_ordering=True):
""" Executes work_func on each work_item. Note: Execution order is not preserved, but output ordering is (optionally).
Parameters:
- num_threads Default: len(work_items) --- Number of threads to use process items in work_items.
- per_sync_timeout Default: 1 --- Each synchronized operation can optionally timeout.
- preserve_result_ordering Default: True --- Reorders result_item to match original work_items ordering.
Return:
--- list of results from applying work_func to each work_item. Order is optionally preserved.
Example:
def process_url(url):
# TODO: Do some work with the url
return url
urls_to_process = ["http://url1.com", "http://url2.com", "http://site1.com", "http://site2.com"]
# process urls in parallel
result_items = do_threaded_work(urls_to_process, process_url)
# print(results)
print(repr(result_items))
"""
global wrapped_work_func
if not num_threads:
num_threads = len(work_items)
work_queue = Queue.Queue()
result_queue = Queue.Queue()
index = 0
for work_item in work_items:
if preserve_result_ordering:
work_queue.put((index, work_item))
else:
work_queue.put(work_item)
index += 1
if preserve_result_ordering:
wrapped_work_func = lambda work_item: (work_item[0], work_func(work_item[1]))
start_logging_with_thread_info()
#spawn a pool of threads, and pass them queue instance
for _ in range(num_threads):
if preserve_result_ordering:
t = ThreadedWorker(work_queue, result_queue, work_func=wrapped_work_func, queue_timeout=per_sync_timeout)
else:
t = ThreadedWorker(work_queue, result_queue, work_func=work_func, queue_timeout=per_sync_timeout)
t.setDaemon(True)
t.start()
work_queue.join()
stop_logging_with_thread_info()
logging.info('work_queue joined')
result_items = []
while not result_queue.empty():
result = result_queue.get(timeout=per_sync_timeout)
logging.info('found result[:500]: ' + repr(result)[:500])
if result:
result_items.append(result)
if preserve_result_ordering:
result_items = [work_item for index, work_item in result_items]
return result_items
class ThreadedWorker(threading.Thread):
""" Generic Threaded Worker
Input to work_func: item from work_queue
Example usage:
import Queue
urls_to_process = ["http://url1.com", "http://url2.com", "http://site1.com", "http://site2.com"]
work_queue = Queue.Queue()
result_queue = Queue.Queue()
def process_url(url):
# TODO: Do some work with the url
return url
def main():
# spawn a pool of threads, and pass them queue instance
for i in range(3):
t = ThreadedWorker(work_queue, result_queue, work_func=process_url)
t.setDaemon(True)
t.start()
# populate queue with data
for url in urls_to_process:
work_queue.put(url)
# wait on the queue until everything has been processed
work_queue.join()
# print results
print repr(result_queue)
main()
"""
def __init__(self, work_queue, result_queue, work_func, stop_when_work_queue_empty=True, queue_timeout=1):
threading.Thread.__init__(self)
self.work_queue = work_queue
self.result_queue = result_queue
self.work_func = work_func
self.stop_when_work_queue_empty = stop_when_work_queue_empty
self.queue_timeout = queue_timeout
def should_continue_running(self):
if self.stop_when_work_queue_empty:
return not self.work_queue.empty()
else:
return True
def run(self):
while self.should_continue_running():
try:
# grabs item from work_queue
work_item = self.work_queue.get(timeout=self.queue_timeout)
# works on item
work_result = self.work_func(work_item)
#place work_result into result_queue
self.result_queue.put(work_result, timeout=self.queue_timeout)
except Queue.Empty:
logging.warning('ThreadedWorker Queue was empty or Queue.get() timed out')
except Queue.Full:
logging.warning('ThreadedWorker Queue was full or Queue.put() timed out')
except:
logging.exception('Error in ThreadedWorker')
finally:
#signals to work_queue that item is done
self.work_queue.task_done()
def start_logging_with_thread_info():
try:
formatter = logging.Formatter('[thread %(thread)-3s] %(message)s')
logging.getLogger().handlers[0].setFormatter(formatter)
except:
logging.exception('Failed to start logging with thread info')
def stop_logging_with_thread_info():
try:
formatter = logging.Formatter('%(message)s')
logging.getLogger().handlers[0].setFormatter(formatter)
except:
logging.exception('Failed to stop logging with thread info')
|
使用示例
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
|
from test import ThreadedWorker
from queue import Queue
urls_to_process = ["http://facebook.com", "http://pypix.com"]
work_queue = Queue()
result_queue = Queue()
def process_url(url):
# TODO: Do some work with the url
return url
def main():
# spawn a pool of threads, and pass them queue instance
for i in range(5):
t = ThreadedWorker(work_queue, result_queue, work_func=process_url)
t.setDaemon(True)
t.start()
# populate queue with data
for url in urls_to_process:
work_queue.put(url)
# wait on the queue until everything has been processed
work_queue.join()
# print results
print(repr(result_queue))
main()
|
Python的并发编程的更多相关文章
- Python 3 并发编程多进程之进程同步(锁)
Python 3 并发编程多进程之进程同步(锁) 进程之间数据不共享,但是共享同一套文件系统,所以访问同一个文件,或同一个打印终端,是没有问题的,竞争带来的结果就是错乱,如何控制,就是加锁处理. 1. ...
- Python 3 并发编程多进程之守护进程
Python 3 并发编程多进程之守护进程 主进程创建守护进程 其一:守护进程会在主进程代码执行结束后就终止 其二:守护进程内无法再开启子进程,否则抛出异常:AssertionError: daemo ...
- Python 3 并发编程多进程之队列(推荐使用)
Python 3 并发编程多进程之队列(推荐使用) 进程彼此之间互相隔离,要实现进程间通信(IPC),multiprocessing模块支持两种形式:队列和管道,这两种方式都是使用消息传递的. 可以往 ...
- python之并发编程
一 背景知识 顾名思义,进程即正在执行的一个过程.进程是对正在运行程序的一个抽象. 进程的概念起源于操作系统,是操作系统最核心的概念,也是操作系统提供的最古老也是最重要的抽象概念之一.操作系统的其他所 ...
- python中并发编程基础1
并发编程基础概念 1.进程. 什么是进程? 正在运行的程序就是进程.程序只是代码. 什么是多道? 多道技术: 1.空间上的复用(内存).将内存分为几个部分,每个部分放入一个程序,这样同一时间在内存中就 ...
- python之并发编程初级篇8
一.进程理论 1)进程介绍 .什么是进程 一个正在进行的过程,或者说是一个程序的运行过程 其实进程是对正在运行的程序的一种抽象/概括的说法 进程的概念起源操作系统,进程是操作最核心的概念之一 操作系统 ...
- Python 的并发编程
这篇文章将讲解 Python 并发编程的基本操作.并发和并行是对孪生兄弟,概念经常混淆.并发是指能够多任务处理,并行则是是能够同时多任务处理.Erlang 之父 Joe Armstrong 有一张非常 ...
- Python之并发编程-多进程
目录 一.multiprocessiong模块介绍 二.Process类的介绍 三.进一步介绍(守护进程.锁.队列.管道.事件等) 1.守护进程 2.锁(同步锁.互斥锁) 3.信号量(了解) 4.队列 ...
- python week08 并发编程之多进程--实践部分
一 multiprocessing模块介绍 python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源(os.cpu_count()查看),在python中大部分情况需要使用多进程.P ...
随机推荐
- Unity3D中暂停时的动画及粒子效果实现
暂停是游戏中经常出现的功能,而Unity3D中对于暂停的处理并不是很理想.一般的做法是将Time.timeScale设置为0.Unity的文档中对于这种情况有以下描述: The scale at wh ...
- 快速上手Runtime(四)之动态添加方法
如果一个类方法非常多,加载类到内存的时候也比较耗费资源,可以使用动态给某个类,添加方法解决.做到优化内存,节省资源的效果. // // Person.m // ResolveInstanceMetho ...
- HEIDSOFT
HEIDSOFT ENTHUSIASTIC GITHUB USER heidsoft@sina.com GitHub Profile I'm a developer based in China.sh ...
- jedis的publish/subscribe[转]含有redis源码解析
首先使用redis客户端来进行publish与subscribe的功能是否能够正常运行. 打开redis服务器 [root@localhost ~]# redis-server /opt/redis- ...
- JAVA的StringBuffer类[转]
StringBuffer类和String一样,也用来代表字符串,只是由于StringBuffer的内部实现方式和String不同,所以StringBuffer在进行字符串处理时,不生成新的对象,在内存 ...
- 浅谈 js中parseInt函数的解析[转]
首先还是从很热门的实例parseInt("09")==0说起. parseInt(number,type)这个函数后面如果不跟第2个参数来表示进制的话,默认是10进制. 比如说pa ...
- [Training Video - 6] [File Reading] [Java] Read Properties file
package com.file.properties; import java.io.FileInputStream; import java.util.Properties; public cla ...
- linux openjdk环境变量配置
下载openjdk : https://jdk.java.net/ tar -xvf ... nano ~/.bashrc export JAVA_HOME=... export PATH=$JAVA ...
- 用kettle实现数据库迁移之oracle到mysql
项目完成后,需要把历史oracle 的数据库转移mysql 用kettle 转换数据. 步骤: 1.打开spoon.bat,文件-->新建-->转换,点击“主对象树”,DB连接右键“新建” ...
- springboot+swagger集成
一.swagger介绍 Swagger 是一款RESTFUL接口的文档在线自动生成+功能测试功能软件.本文简单介绍了在项目中集成swagger的方法和一些常见问题.如果想深入分析项目源码,了解更多内容 ...