题目链接

http://poj.org/problem?id=2528

Description

The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:

  • Every candidate can place exactly one poster on the wall.
  • All posters are of the same height equal to the height of
    the wall; the width of a poster can be any integer number of bytes (byte
    is the unit of length in Bytetown).
  • The wall is divided into segments and the width of each segment is one byte.
  • Each poster must completely cover a contiguous number of wall segments.

They have built a wall 10000000 bytes long (such that there is
enough place for all candidates). When the electoral campaign was
restarted, the candidates were placing their posters on the wall and
their posters differed widely in width. Moreover, the candidates started
placing their posters on wall segments already occupied by other
posters. Everyone in Bytetown was curious whose posters will be visible
(entirely or in part) on the last day before elections.

Your task is to find the number of visible posters when all the
posters are placed given the information about posters' size, their
place and order of placement on the electoral wall.

Input

There will be several test cases in the input. Each test case consists of N + 1 lines where N (1 ≤ N ≤ 200,000) is given in the first line of the test case. The next N lines contain the pairs of values Posi and Vali in the increasing order of i (1 ≤ iN). For each i, the ranges and meanings of Posi and Vali are as follows:

  • Posi ∈ [0, i − 1] — The i-th person came to the queue and stood right behind the Posi-th
    person in the queue. The booking office was considered the 0th person
    and the person at the front of the queue was considered the first person
    in the queue.
  • Vali ∈ [0, 32767] — The i-th person was assigned the value Vali.

There no blank lines between test cases. Proceed to the end of input.

 

Output

For each input data set print the number of visible posters after all the posters are placed.

The picture below illustrates the case of the sample input.

 

Sample Input

1
5
1 4
2 6
8 10
3 4
7 10

Sample Output

4

HINT

题意

一个区间按照顺序贴n海报,海报高都为1,位置为(l,r),表示海报的位置和长度。

最后问你在最后,能看见多少个海报(即没有被其他海报完全覆盖)。

题解:

这题就是区间覆盖,区间修改,最后将标记全部下放到底,扫一遍叶子节点就好了。

需要注意的是离散化时对于区间(l,r),需要加入l,l+1,r,r+1四个点离散。

如果只离散左右端点,比如 (1,3) (3,10) (10,13)  三个海报离散后,就成了(1,2) (2,3) (3, 4),这样(2,3)就没有了。

提供一个下载本题数据的网站:https://webdocs.cs.ualberta.ca/~acpc/2003/

代码:

 #include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
#define N 100050
int n,cnt,num,ans,kth[N<<],f[N];
struct Query{int l,r;}que[N];
struct Tree{int l,r,val;}tr[N<<];
template<typename T>void read(T&x)
{
int k=;char c=getchar();
x=;
while(!isdigit(c)&&c!=EOF)k^=c=='-',c=getchar();
if (c==EOF)exit();
while(isdigit(c))x=x*+c-'',c=getchar();
x=k?-x:x;
}
void push_down(int x)
{
if (tr[x].val==)return ;
Tree &a=tr[x<<],&b=tr[x<<|];
a.val=tr[x].val;
b.val=tr[x].val;
tr[x].val=;
}
void bt(int x,int l,int r)
{
++num;
tr[x]={l,r,};
if (l==r)return;
int mid=(l+r)>>;
bt(x<<,l,mid);
bt(x<<|,mid+,r);
}
void update(int x,int l,int r,int tt)
{
if (l<=tr[x].l&&tr[x].r<=r)
{
tr[x].val=tt;
return;
}
int mid=(tr[x].l+tr[x].r)>>;
push_down(x);
if (l<=mid)update(x<<,l,r,tt);
if (mid<r)update(x<<|,l,r,tt);
}
void query(int x)
{
if (tr[x].l==tr[x].r)
{
int tt=f[tr[x].val]==;
ans+=tt;
f[tr[x].val]=;
return;
}
int mid=(tr[x].l+tr[x].r)>>;
push_down(x);
query(x<<);
query(x<<|);
}
void clear()
{
num=; ans=; cnt=;
memset(f,,sizeof(f));
}
void input()
{
read(n);
for(int i=;i<=n;i++)
{
read(que[i].l);read(que[i].r);
kth[++cnt]=que[i].l;
kth[++cnt]=que[i].r;
kth[++cnt]=que[i].l+;
kth[++cnt]=que[i].r+;
}
sort(kth+,kth+cnt+);
cnt=unique(kth+,kth+cnt+)-kth-;
bt(,,cnt);
}
void work()
{ for(int i=;i<=n;i++)
{
int l=lower_bound(kth+,kth+cnt+,que[i].l)-kth;
int r=lower_bound(kth+,kth+cnt+,que[i].r)-kth;
update(,l,r,i);
}
f[]=;
/* for(int x=1;x<=n*8;x++)
if (tr[x].l==tr[x].r)
{
ans+=f[tr[x].val]==0;
f[tr[x].val]=1;
}
else push_down(x);
*/
query();
printf("%d\n",ans);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("aa.in","r",stdin);
#endif
int q;
read(q);
while(q--)
{
clear();
input();
work();
}
}

Mayor's posters 线段树区间覆盖的更多相关文章

  1. poj2528 Mayor's posters(线段树区间覆盖)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 50888   Accepted: 14737 ...

  2. POJ 2528 Mayor's posters (线段树+区间覆盖+离散化)

    题意: 一共有n张海报, 按次序贴在墙上, 后贴的海报可以覆盖先贴的海报, 问一共有多少种海报出现过. 题解: 因为长度最大可以达到1e7, 但是最多只有2e4的区间个数,并且最后只是统计能看见的不同 ...

  3. POJ 2528 Mayor's posters(线段树,区间覆盖,单点查询)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 45703   Accepted: 13239 ...

  4. POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化)

    POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化) 题意分析 贴海报,新的海报能覆盖在旧的海报上面,最后贴完了,求问能看见几张海报. 最多有10000张海报,海报 ...

  5. POJ2528:Mayor's posters(线段树区间更新+离散化)

    Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral electio ...

  6. poj2528 Mayor's posters(线段树区间修改+特殊离散化)

    Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral electio ...

  7. POJ 2528 Mayor's posters (线段树区间更新+离散化)

    题目链接:http://poj.org/problem?id=2528 给你n块木板,每块木板有起始和终点,按顺序放置,问最终能看到几块木板. 很明显的线段树区间更新问题,每次放置木板就更新区间里的值 ...

  8. poj-----(2528)Mayor's posters(线段树区间更新及区间统计+离散化)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 43507   Accepted: 12693 ...

  9. poj 2528 Mayor's posters 线段树区间更新

    Mayor's posters Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=2528 Descript ...

随机推荐

  1. Mysql 日志文件类型

    简介: Mysql 中提供了多种类型的日志文件,分别反映 Mysql 的不同信息,了解它们很有必要. 1.Error log ( 错误日志 ) 错误日志记录了 Mysql Server 运行过程中所有 ...

  2. win 10+ iis 10 部署.net core 1.1 web api

    今天上午部署了wcf,部署了好久,一直没有部署好,最后找到了dudu的部署方法,结果中午吃饭的时候成功了,这是链接:http://www.cnblogs.com/dudu/p/3328066.html ...

  3. ubuntu系统中出现mysql数据库无法启动报错2002该怎么处理,具体报错信息如正文所示

    python@ubuntu:~$ mysql -uroot -pmysqlmysql: [Warning] Using a password on the command line interface ...

  4. linux下jdk/maven/tomcat

    debian安装的openjdk只包括jre,没有tools.jar,dt.jar,所以要安装openjdk完全版. sudo apt--jdk 若操作系统中安装多个版本的java,可以采用如下命令来 ...

  5. 编码总结,以及对BOM的理解

    一.前言 在跨平台.跨操作系统或者跨区域之间,经常会涉及到编码的问题,因为前段时间在项目中,遇到了因为编码而产生乱码的问题,以前对编码也是一知半解,所以决定对编码有一个更为深入的了解,因此才有了这篇自 ...

  6. if UNITY_EDITOR这个判断常用,还有哪个常用捏?

    #if DEVELOPMENT_BUILD || UNITY_EDITOR DEVELOPMENT_BUILD表示开发版的意思,会在程序右下角显示 Development Build 我们可以根据这个 ...

  7. Ubuntu Server 12.04 LTS搭建SVN服务及修改端口

    采用了apache结合svn的方式. 首先安装apache.subversion.svn-apache sudo apt-get install apache2 sudo apt-get instal ...

  8. Qt + OpenSenceGraph(osg) 加载OSG模型

  9. 746. Min Cost Climbing Stairs 最不费力的加权爬楼梯

    [抄题]: On a staircase, the i-th step has some non-negative cost cost[i] assigned (0 indexed). Once yo ...

  10. java的集合框架详解

    前言:数据结构对程序设计有着深远的影响,在面向过程的C语言中,数据库结构用struct来描述,而在面向对象的编程中,数据结构是用类来描述的,并且包含有对该数据结构操作的方法. 在Java语言中,Jav ...