本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。

本文作者:ljh2000
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!

题目链接:P3601

正解:线性筛+欧拉函数

解题报告:

  我一看到这道题的第一反应居然是杜教筛,真是没救了…

  显然答案就是每个数自己-他的欧拉函数,这个东西的和。

  考虑区间范围不大,那么我们没必要把$[1,r]$整个区间的欧拉函数做出来。

  因为大于$\sqrt{r}$的的质因子最多一个,那么我就可以把$10^6$范围内的质数筛出来,然后对$[l,r]$根据欧拉函数定义暴力算函数值。

  最后再单独考虑$>$ $\sqrt{r}$的那个质因子的贡献。

  这个复杂度就是$O(\sqrt{r}log(r-l))$。

  

//It is made by ljh2000
//有志者,事竟成,破釜沉舟,百二秦关终属楚;苦心人,天不负,卧薪尝胆,三千越甲可吞吴。
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <string>
#include <complex>
#include <bitset>
using namespace std;
typedef long long LL;
typedef long double LB;
typedef complex<double> C;
const double pi = acos(-1);
const int MAXN = 1000011;
const int mod = 666623333;
int m,prime[MAXN],cnt;
bool vis[MAXN];
LL l,r,lb,rb,len,a[MAXN],R[MAXN],ans; inline LL getint(){
LL w=0,q=0; char c=getchar(); while((c<'0'||c>'9') && c!='-') c=getchar();
if(c=='-') q=1,c=getchar(); while (c>='0'&&c<='9') w=w*10+c-'0',c=getchar(); return q?-w:w;
} inline void init(){
m=1000000; for(int i=1;i<=len;i++) a[i]=R[i]=l+i-1;
for(int i=2;i<=m;i++) {
if(!vis[i]) { prime[++cnt]=i; }
for(int j=1;j<=cnt && i*prime[j]<=m;j++) {
vis[i*prime[j]]=1;
if(i%prime[j]==0) break;
}
}
} inline void work(){
l=getint(); r=getint(); len=r-l+1; init();
LL now,pos;
for(int i=1;i<=cnt;i++) {
lb=l/prime[i]; rb=r/prime[i];
if((LL)prime[i]*lb<l) lb++;
for(LL j=lb;j<=rb;j++) {
now=(LL)prime[i]*j; pos=now-l+1;
a[pos]/=prime[i]; a[pos]*=prime[i]-1;
while(R[pos]%prime[i]==0) R[pos]/=prime[i];
}
}
for(int i=1;i<=len;i++) if(R[i]!=1) a[i]/=R[i],a[i]*=R[i]-1;
for(int i=1;i<=len;i++) ans+=l+i-1-a[i],ans%=mod;
printf("%lld",ans);
} int main()
{
work();
return 0;
}
//有志者,事竟成,破釜沉舟,百二秦关终属楚;苦心人,天不负,卧薪尝胆,三千越甲可吞吴。

  

洛谷P3601 签到题的更多相关文章

  1. A 洛谷 P3601 签到题 [欧拉函数 质因子分解]

    题目背景 这是一道签到题! 建议做题之前仔细阅读数据范围! 题目描述 我们定义一个函数:qiandao(x)为小于等于x的数中与x不互质的数的个数. 这题作为签到题,给出l和r,要求求. 输入输出格式 ...

  2. 洛谷P3601签到题(欧拉函数)

    题目背景 这是一道签到题! 建议做题之前仔细阅读数据范围! 题目描述 我们定义一个函数:qiandao(x)为小于等于x的数中与x不互质的数的个数. 这题作为签到题,给出l和r,要求求. 输入输出格式 ...

  3. 洛谷 P3601 签到题

    https://www.luogu.org/problemnew/show/P3601 一道关于欧拉函数的题. 读完题目以后我们知道所谓的$aindao(x)=x- \phi (x) $. 对于x小的 ...

  4. 洛谷3794 签到题IV

    题目描述 给定一个长度为n的序列$a_1,a_2...a_n$,其中每个数都是正整数. 你需要找出有多少对(i,j),$1 \leq i \leq j \leq n$且$gcd(a_i,a_{i+1} ...

  5. 洛谷P3764 签到题 III

    题目背景 pj组选手zzq近日学会了求最大公约数的辗转相除法. 题目描述 类比辗转相除法,zzq定义了一个奇怪的函数: typedef long long ll; ll f(ll a,ll b) { ...

  6. 【noip】跟着洛谷刷noip题2

    noip好难呀. 上一个感觉有点长了,重开一个. 36.Vigenère 密码 粘个Openjudge上的代码 #include<cstdio> #include<iostream& ...

  7. [洛谷P1707] 刷题比赛

    洛谷题目连接:刷题比赛 题目背景 nodgd是一个喜欢写程序的同学,前不久洛谷OJ横空出世,nodgd同学当然第一时间来到洛谷OJ刷题.于是发生了一系列有趣的事情,他就打算用这些事情来出题恶心大家-- ...

  8. 洛谷P5274 优化题(ccj)

    洛谷P5274 优化题(ccj) 题目背景 CCJCCJ 在前往参加 Universe \ OIUniverse OI 的途中... 题目描述 有一个神犇 CCJCCJ,他在前往参加 Universe ...

  9. 洛谷 P4148 简单题 KD-Tree 模板题

    Code: //洛谷 P4148 简单题 KD-Tree 模板题 #include <cstdio> #include <algorithm> #include <cst ...

随机推荐

  1. RESTful HTTP的实践(转)

    add by zhj: 文章有点老了,2009年的,到现在已经六年了,不过还是很有参考价值的. 另外,吐槽一下PUT method,竟然允许用户用实例号来创建,靠,这也行,实例号还是后台来定义比较方便 ...

  2. 基于Flume+Kafka+ Elasticsearch+Storm的海量日志实时分析平台(转)

    0背景介绍 随着机器个数的增加.各种服务.各种组件的扩容.开发人员的递增,日志的运维问题是日渐尖锐.通常,日志都是存储在服务运行的本地机器上,使用脚本来管理,一般非压缩日志保留最近三天,压缩保留最近1 ...

  3. debian7更换gcc版本的二种方法分享

    debian7更换gcc版本的二种方法分享   最近在编译qt,之前用的是debian6,gcc版本是gcc-4.4,当使用debian7时,编译遇到了很多跟debian6不一样的问题,debian7 ...

  4. EntityFramework 6 开篇

    本系列文章主要来讲解理解以及怎样使用EntityFramework,写这个系列主要是因为部门里面准备来使用EF,为了让大家一起来学习,我每天发布1-2篇文章让大家一块参与学习.之前一直写在有道云笔记里 ...

  5. 启动secondarynamenode时报错

    环境: mac系统 + hadoop2.6.0-cdh5.7.0伪分布式  问题一: 在启动hdfs的secondarynamenode时,报错. 正常情况: sumengdeMacBook-Pro: ...

  6. Python+Appium API

    1.contextscontexts(self): Returns the contexts within the current session. 返回当前会话中的上下文,使用后可以识别H5页面的控 ...

  7. C#打印类

    using System;using System.Collections.Generic;using System.Text;using System.Windows.Forms;using Sys ...

  8. JVM(3) 垃圾回收器与内存分配策略

    文章内容摘自:深入理解java虚拟机 第三章   对象已死? 1. 引用计数算法: 给对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加1:当引用失效时,计数器值就减1:任何时刻计数器为0 ...

  9. linux pip 查看版本提示

    After upgrading pip (or pip3, in this case) if the following occurs: $ ~ pip3 -V Traceback (most rec ...

  10. JS正则表达式从入门到入土(8)—— REGEXP对象属性

    对象属性 常用对象属性主要有以下几种: 1.global: 是否全文搜索,默认false 2.ignore case:是否大小写敏感,默认是false 3.multiline:多行搜索,默认值是fal ...