学习链接:https://baike.baidu.com/item/%E4%BC%B8%E5%B1%95%E6%A0%91/7003945?fr=aladdin

求LCA的方法有很多,在这里就只介绍一种离线算法,Tarjan算法! 可以保证在O(n+q)的时间复杂度内算出所有答案(n是节点个数  q是询问个数)

为什么叫离线算法呢?  因为这种算法的思想是先把所有的询问存起来,在遍历的树的同时遍历这颗子树包含的询问:

本算法结合了深度优先搜索(DFS)和并查集的思想,下面说一下大体流程:

  对于新搜索的到的结点,首先要创建由这个节点构成的集合,再对当前节点的每一颗子树进行搜索,每搜索完一颗子树要保证子树内的LCA询问都已解决。其它的LCA必定在

这个子树之外,这时把子树所形成的的集合与当前节点的集合合并,并把当前节点设为这个集合的祖先 。之后继续搜索下一颗子树,直到当前节点的所有子树搜索完。这时把当前节点也设为已经访问过的结点

同时处理有关当前节点的询问,如果有一个当前节点到节点v的询问,且被检查过,则由于进行的是深度优先搜索,当前节点与v的最近公共祖先一定还没有被检查过,而这个最近公共祖先的包含v的子树

一定已经搜索过了,那么这个最近公共祖先一定是v集合所在集合的祖先。

如图:

根据实现算法可以看出,只有当某一棵子树全部遍历处理完成后,才将该子树的根节点标记为黑色(初始化是白色),假设程序按上面的树形结构进行遍历,首先从节点1开始,然后递归处理根为2的子树,当子树2处理完毕后,节点2, 5, 6均为黑色;接着要回溯处理3子树,首先被染黑的是节点7(因为节点7作为叶子不用深搜,直接处理),接着节点7就会查看所有询问(7, x)的节点对,假如存在(7, 5),因为节点5已经被染黑,所以就可以断定(7, 5)的最近公共祖先就是find(5).ancestor,即节点1(因为2子树处理完毕后,子树2和节点1进行了union,find(5)返回了合并后的树的根1,此时树根的ancestor的值就是1)。有人会问如果没有(7, 5),而是有(5, 7)询问对怎么处理呢? 我们可以在程序初始化的时候做个技巧,将询问对(a, b)和(b, a)全部存储,这样就能保证完整性。

 
代码分为六块:
1、输入树:只需要存x->y有一条边 并不需要存双向边,因为是从根节点开始走的  (也就是入度为0的点) 同时找到根节点
2、输入询问:注意如果查询u v的最近公共祖先   v u也存进去  (上面已经说明了原因)
3、初始化并查集
4、初始化所有点的祖先
5、初始化所有点都没有被检查过
6、Tarjan算法:其实就是深搜 再把搜完的子树和当前节点合并为一个集合   祖先是当前节点。  当搜索完所有的子树之后   标记当前节点为访问过   并查询所有与当前节点有关的询问。。
 
参考代码:
#include<iostream>
#include<cstdio>
#include<vector>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn=;//最大顶点数
int n,root;//实际顶点数 树根节点
int indeg[maxn];//顶点入度 用来判断树根
vector<int> tree[maxn];//树的邻接表(不一定是二叉树)
void inputTree()
{
scanf("%d",&n);
for(int i=;i<n;i++) tree[i].clear(),indeg[i]=;//初始化树 顶点编号从0开始
for(int i=;i<n;i++)//输入n-1条边
{
int x,y;
scanf("%d%d",&x,&y);
tree[x].push_back(y);//x->y有一条边
indeg[y]++;//加入邻接表 y入度加一
}
for(int i=;i<n;i++)//寻找树根 入度为0的点
{
if(indeg[i]==)
{
root=i;
break;
}
}
}
vector<int> query[maxn];//所有查询内容
void inputQuires()//输入查询
{
for(int i=;i<n;i++)//清空上次查询的内容
query[i].clear();
int m;
scanf("%d",&m);
while(m--)
{
int u,v;
scanf("%d%d",&u,&v);//查询u和v的lca
query[u].push_back(v);
query[v].push_back(u);
}
}
int father[maxn],rnk[maxn];//节点的父亲 秩
void makeSet()//初始化并查集
{
for(int i=;i<n;i++)
{
father[i]=i;
rnk[i]=;
}
}
int findSet(int x)//查找祖先
{
return father[x]==x?x:father[x]=findSet(father[x]);
}
void unionSet(int x,int y)//合并
{
x=findSet(x);
y=findSet(y);
if(x==y) return;
if(rnk[x]>rnk[y]) father[y]=x;
else
{
father[x]=y;
if(rnk[x]==rnk[y]) rnk[y]++;
}
}
int ancestor[maxn];//已经访问节点集合的祖先
bool vs[maxn];//访问标记
void Tarjan(int x)//Tarjan算法求解lca
{
for(int i=;i<tree[x].size();i++)
{
Tarjan(tree[x][i]);//访问子树
unionSet(x,tree[x][i]);//将子树节点与根节点x的集合合并
ancestor[findSet(x)]=x;//合并后的集合的祖先为x
}
vs[x]=;//标记为访问过
for(int i=;i<query[x].size();i++)//与根节点有关的查询
{
if(vs[query[x][i]]) //如果查询的另一个节点已经访问过 则输出结果
printf("%d和%d的最近公共祖先为:%d\n",x,query[x][i],ancestor[findSet(query[x][i])]);
}
}
int main()
{
inputTree();//输入树
inputQuires();//输入查询
makeSet();
for(int i=;i<n;i++) ancestor[i]=i;
memset(vs,,sizeof(vs));
Tarjan(root);
return ;
}

LCA(最近公共祖先)的更多相关文章

  1. lca 最近公共祖先

    http://poj.org/problem?id=1330 #include<cstdio> #include<cstring> #include<algorithm& ...

  2. Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载)

    Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载) 转载自:http://hi.baidu.com/lydrainbowcat/blog/item/2 ...

  3. LCA(最近公共祖先)模板

    Tarjan版本 /* gyt Live up to every day */ #pragma comment(linker,"/STACK:1024000000,1024000000&qu ...

  4. CodeVs.1036 商务旅行 ( LCA 最近公共祖先 )

    CodeVs.1036 商务旅行 ( LCA 最近公共祖先 ) 题意分析 某首都城市的商人要经常到各城镇去做生意,他们按自己的路线去做,目的是为了更好的节约时间. 假设有N个城镇,首都编号为1,商人从 ...

  5. LCA近期公共祖先

    LCA近期公共祖先 该分析转之:http://kmplayer.iteye.com/blog/604518 1,并查集+dfs 对整个树进行深度优先遍历.并在遍历的过程中不断地把一些眼下可能查询到的而 ...

  6. LCA 近期公共祖先 小结

    LCA 近期公共祖先 小结 以poj 1330为例.对LCA的3种经常使用的算法进行介绍,分别为 1. 离线tarjan 2. 基于倍增法的LCA 3. 基于RMQ的LCA 1. 离线tarjan / ...

  7. LCA最近公共祖先 ST+RMQ在线算法

    对于一类题目,是一棵树或者森林,有多次查询,求2点间的距离,可以用LCA来解决.     这一类的问题有2中解决方法.第一种就是tarjan的离线算法,还有一中是基于ST算法的在线算法.复杂度都是O( ...

  8. Tarjan应用:求割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)【转】【修改】

    一.基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成 ...

  9. (转)Tarjan应用:求割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)

    基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个 ...

  10. LCA 最近公共祖先 tarjan离线 总结 结合3个例题

    在网上找了一些对tarjan算法解释较好的文章 并加入了自己的理解 LCA(Least Common Ancestor),顾名思义,是指在一棵树中,距离两个点最近的两者的公共节点.也就是说,在两个点通 ...

随机推荐

  1. java中的继承(is a )和组合(has a)

    我们知道java语言有三大特性:封装,继承,多态 但是继承和封装却是一对有点矛盾的两个方面,怎么理解?? 我们想想:封装的目的是想让隐藏类中的属性和方法.但是在继承过程中,我们的子类肯定会继承父类的方 ...

  2. 使用jQuery 取文本

    <html> <head> <meta charset="UTF-8"> <title>b</title> <sc ...

  3. C++编译器之间的不同性能

    C++编译器之间的不同性能 编译器就是将“高级语言”翻译为“机器语言(低级语言)”的程序.一个现代编译器的主要工作流程:源代码 (source code) →预处理器 (preprocessor) → ...

  4. Nginx根据用户请求的不同参数返回不同的json值

    用户请求url:http://localhost:8000/getconfig?v=1.03.01,根据参数v=1.03.01或者其他的值返回不同的json值.如果用户请求不带该参数,则返回默认的js ...

  5. Javascript基础编程の面向对象编程

    javascript是解释型的语言,在编译时和运行时之间没有明显区别,因此需要更动态的方法.javascript没有正式的类的概念,我们可以使用在运行时创建新的对象类型来替代,并且可以随时更改已有对象 ...

  6. sonar资料

    看过的sonar比较好的在线参考资料(自认为): 1.<使用 Sonar 进行代码质量管理>>,地址:http://www.ibm.com/developerworks/cn/jav ...

  7. C#+MVC+EF+LayUI框架的应用(附带源码和教程)

    内容: 1.该框架主要用到的技术有MVC,EF,Layer,以及Razor语法和数据库有关的操作. 2.框架二次开发(增加,删除,修改,建库,以及维护查询等) 3.框架公用库更新要求与规范 4.本框架 ...

  8. c#设计模式之:外观模式(Facade)

    一.引言 在软件开发过程中,客户端程序经常会与复杂系统的内部子系统进行耦合,从而导致客户端程序随着子系统的变化而变化,然而为了将复杂系统的内部子系统与客户端之间的依赖解耦,从而就有了外观模式,也称作 ...

  9. ASP .Net Core 2.0 修改默认端口

    ASP .Net Core 的默认端口是5000,如果想在同一台服务器上运行多个实例,就不能都监听5000端口了,需要每一个实例都监听不同的端口.当然,如果您正在使用IIS或者Jexus来托管,可以不 ...

  10. Consul ACL

    consul自带ACL控制功能,看了很多遍官方文档,没有配置步骤https://www.consul.io/docs/internals/acl.html 主要对各种配置参数解释,没有明确的步骤,当时 ...