聚类结果的好坏,有很多种指标,其中F-Measue即F值是常用的一种,其中包括precision(查准率或者准确率)和recall(查全率或者召回率)。

F-Measue是信息检索中常用的评价标准。

F-Measue的公式如下:

\[{{F}_{\beta }}=\frac{\left( {{\beta }^{2}}+1 \right)P\cdot R}{{{\beta }^{2}}\cdot P+R}\]

其中${\beta}$是参数,P是precision,R是reacll。通常${\beta}$取1,即:

\[F=\frac{2\cdot P\cdot R}{P+R}\]

设人工标记的分类簇为${{P}_{j}}$,聚类算法分类簇为${{C}_{i}}$

precision、recall个人感觉准确率和查全率翻译的更方便理解些。

precision(查准率或者准确率):

\[P({{P}_{j}},{{C}_{i}})=\frac{\left| {{P}_{j}}\cap {{C}_{i}} \right|}{\left| {{C}_{i}} \right|}\]

recall(查全率或者召回率):

\[R({{P}_{j}},{{C}_{i}})=\frac{\left| {{P}_{j}}\cap {{C}_{i}} \right|}{\left| {{P}_{j}} \right|}\]

F-Measure:

\[F\left( {{P}_{j}},{{C}_{i}} \right)=\frac{2\times P({{P}_{j}},{{C}_{i}})\times R\left( {{P}_{j}},{{C}_{i}} \right)}{P\left( {{P}_{j}},{{C}_{i}} \right)+R\left( {{P}_{j}},{{C}_{i}} \right)}\]

获得一个矩阵,不同于信息检索的是F-Measure有多个,并且人工标记簇的个数和聚类算法得到的簇个数不一定相等。

若已人工标记的簇${{P}_{j}}$为基准,则聚类算法结果越接近人工标记的结果效果越好。也是推荐使用的指标

针对每一个人工标记的${{P}_{j}}$选择${{C}_{i}}$中最接近的作为其F值:

\[F\left( {{P}_{j}} \right)=\underset{1\le i\le m}{\mathop{\max }}\,F({{P}_{j}},{{C}_{i}})\]

然后对所得到的F值进行加权平均,得到最终的一个直观的F值

\[F=\sum\limits_{j=1}^{S}{{{w}_{j}}\cdot F\left( {{P}_{j}} \right)},\ {{w}_{j}}=\frac{\left| {{P}_{j}} \right|}{\sum\limits_{i=1}^{s}{\left| {{P}_{i}} \right|}}=\frac{\left| {{P}_{j}} \right|}{n}\]

代码:

function [FMeasure,Accuracy] = Fmeasure(P,C)
% P为人工标记簇
% C为聚类算法计算结果
N = length(C);% 样本总数
p = unique(P);
c = unique(C);
P_size = length(p);% 人工标记的簇的个数
C_size = length(c);% 算法计算的簇的个数
% Pid,Rid:非零数据:第i行非零数据代表的样本属于第i个簇
Pid = double(ones(P_size,1)*P == p'*ones(1,N) );
Cid = double(ones(C_size,1)*C == c'*ones(1,N) );
CP = Cid*Pid';%P和C的交集,C*P
Pj = sum(CP,1);% 行向量,P在C各个簇中的个数
Ci = sum(CP,2);% 列向量,C在P各个簇中的个数 precision = CP./( Ci*ones(1,P_size) );
recall = CP./( ones(C_size,1)*Pj );
F = 2*precision.*recall./(precision+recall);
% 得到一个总的F值
FMeasure = sum( (Pj./sum(Pj)).*max(F) );
Accuracy = sum(max(CP,[],2))/N;
end

  

聚类效果评测-Fmeasure和Accuracy及其Matlab实现的更多相关文章

  1. 数学建模及机器学习算法(一):聚类-kmeans(Python及MATLAB实现,包括k值选取与聚类效果评估)

    一.聚类的概念 聚类分析是在数据中发现数据对象之间的关系,将数据进行分组,组内的相似性越大,组间的差别越大,则聚类效果越好.我们事先并不知道数据的正确结果(类标),通过聚类算法来发现和挖掘数据本身的结 ...

  2. 使用K-means进行聚类,用calinski_harabaz_score评价聚类效果

    代码如下: """ 下面的方法是用kmeans方法进行聚类,用calinski_harabaz_score方法评价聚类效果的好坏 大概是类间距除以类内距,因此这个值越大越 ...

  3. 【转】GMM与K-means聚类效果实战

    原地址: GMM与K-means聚类效果实战 备注 分析软件:python 数据已经分享在百度云:客户年消费数据 密码:lehv 该份数据中包含客户id和客户6种商品的年消费额,共有440个样本 正文 ...

  4. 【原】KMeans与深度学习模型结合提高聚类效果

    这几天在做用户画像,特征是用户的消费商品的消费金额,原始数据(部分)是这样的: id goods_name goods_amount 男士手袋 1882.0 淑女装 2491.0 女士手袋 345.0 ...

  5. 【原】KMeans与深度学习自编码AutoEncoder结合提高聚类效果

    这几天在做用户画像,特征是用户的消费商品的消费金额,原始数据(部分)是这样的: id goods_name goods_amount 男士手袋 1882.0 淑女装 2491.0 女士手袋 345.0 ...

  6. Matlab实现K-Means聚类算法

    人生如戏!!!! 一.理论准备 聚类算法,不是分类算法.分类算法是给一个数据,然后判断这个数据属于已分好的类中的具体哪一类.聚类算法是给一大堆原始数据,然后通过算法将其中具有相似特征的数据聚为一类. ...

  7. MATLAB中“fitgmdist”的用法及其GMM聚类算法

    MATLAB中“fitgmdist”的用法及其GMM聚类算法 作者:凯鲁嘎吉 - 博客园http://www.cnblogs.com/kailugaji/ 高斯混合模型的基本原理:聚类——GMM,MA ...

  8. K-means聚类算法MATLAB

    以K-means算法为例,实现了如下功能 自动生成符合高斯分布的数据,函数名为gaussianSample.m 实现多次随机初始化聚类中心,以找到指定聚类数目的最优聚类.函数名myKmeans.m 自 ...

  9. 发表在 Science 上的一种新聚类算法

    今年 6 月份,Alex Rodriguez 和 Alessandro Laio 在 Science 上发表了一篇名为<Clustering by fast search and find of ...

随机推荐

  1. IDOC 实例测试

    这份文档主要是自己学习IDOC的一些练习过程及心得,可能讲的不全面,但应该可以帮助大家了解IDOC的一些工作方式. IDOC或者说是ALE,事实上,是SAP用于分布和集成数据的一种方式.所以,我个人就 ...

  2. python学习笔记(二十)初识面向对象

    面向对象的编程的主要思想是把构成问题的各个事物分解成各个对象,建立对象的目的不是为了完成一个步骤,而是为了描述一个事物在解决问题的过程中经历的步骤和行为.对象作为程序的基本单位,将程序和数据封装其中, ...

  3. 一、html

    一.html相关概念 html是 htyper text markup language 即超文本标记语言,超文本就是指页面内可以包含图片.链接,甚至音乐.程序等非文字元素,而标记语言:即标记(标签) ...

  4. 在Windows上安装Elasticsearch 5.x

    在Windows上安装Elasticsearch 5.x 自己想学习Elasticsearch,但是又不懂Linux,按照同事给的Linux安装教程,也是搞不明白,于是想先在Windows上安装一下入 ...

  5. hdu4057 Rescue the Rabbit

    地址:http://acm.hdu.edu.cn/showproblem.php?pid=4057 题目: Rescue the Rabbit Time Limit: 20000/10000 MS ( ...

  6. cocos2dx 3.x HttpRequest GET获取数据

    .h文件 #include "network/HttpClient.h" //包含头文件 // GET 函数 void createGetHttp(); void getHttp_ ...

  7. WCF可靠性会话之服务分流

    可靠性绘画答条件: (1)服务绑定支持可靠性绘画:特别是netTcpBinding.wsHttpBinding及wsDualHttpBinding. wsDualHtttpBinding可靠性绘画始终 ...

  8. 20145324 Java实验四

    在IDEA上操作 由于不会创建安卓模拟器失败 选择老师给的插件 成功 实验总结 开始开发安卓,感觉更难了,这次实验完全是看运气拼电脑的实验! 步骤 耗时 百分比 需求分析 10m 17% 设计 20m ...

  9. ubuntu 12.04网络设置

    1.服务器版本 设置IP地址 ubuntu 12.04的网络设置文件是/etc/network/interfaces,打开文件,会看到 auto lo iface lo inet loopback 这 ...

  10. 教你如何挑选深度学习GPU【转】

    本文转载自:https://blog.csdn.net/qq_38906523/article/details/78730158 即将进入 2018 年,随着硬件的更新换代,越来越多的机器学习从业者又 ...