先用线段树预处理出每个数最终的位置.然后用BIT维护最长上升子序列就行了.

用线段树O(nlogn)O(nlogn)O(nlogn)预处理就直接倒着做,每次删去对应位置的数.具体看代码

CODE

#include<bits/stdc++.h>
using namespace std;
char cb[1<<15],*cs=cb,*ct=cb;
#define getc() (cs==ct&&(ct=(cs=cb)+fread(cb,1,1<<15,stdin),cs==ct)?0:*cs++)
template<class T>inline void read(T &res) {
char ch; int flg = 1; while(!isdigit(ch=getc()))if(ch=='-')flg=-flg;
for(res=ch-'0';isdigit(ch=getc());res=res*10+ch-'0'); res*=flg;
}
const int MAXN = 100005;
int n, m, x[MAXN], rk[MAXN], ans, sz[MAXN<<2], T[MAXN];
inline void chkmax(int &x, int y) { if(y > x) x = y; }
inline void upd(int x, int val) { for(; x <= n; x += x&-x) chkmax(T[x], val); }
inline int qsum(int x) { int re = 0; for(; x; x -= x&-x) chkmax(re, T[x]); return re; }
inline void upd(int i) { sz[i] = sz[i<<1] + sz[i<<1|1]; }
void build(int i, int l, int r) {
if(l == r) { sz[i] = 1; return; }
int mid = (l + r) >> 1;
build(i<<1, l, mid);
build(i<<1|1, mid+1, r);
upd(i);
}
int query(int i, int l, int r, int k) {
if(l == r) { sz[i] = 0; return l; }
int mid = (l + r) >> 1, re;
if(k <= sz[i<<1]) re = query(i<<1, l, mid, k);
else re = query(i<<1|1, mid+1, r, k-sz[i<<1]);
upd(i); return re;
}
int main() {
read(n); build(1, 1, n);
for(int i = 1; i <= n; ++i) read(x[i]), ++x[i];
for(int i = n; i >= 1; --i) rk[i] = query(1, 1, n, x[i]); //!
for(int i = 1, f; i <= n; ++i) {
chkmax(ans, f = qsum(rk[i]) + 1);
printf("%d\n", ans);
upd(rk[i], f);
}
}

BZOJ 3173: [Tjoi2013]最长上升子序列 (线段树+BIT)的更多相关文章

  1. BZOJ 3173: [Tjoi2013]最长上升子序列

    3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1524  Solved: 797[Submit][St ...

  2. Bzoj 3173: [Tjoi2013]最长上升子序列 平衡树,Treap,二分,树的序遍历

    3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1183  Solved: 610[Submit][St ...

  3. BZOJ 3173: [Tjoi2013]最长上升子序列( BST + LIS )

    因为是从1~n插入的, 慢插入的对之前的没有影响, 所以我们可以用平衡树维护, 弄出最后的序列然后跑LIS就OK了 O(nlogn) --------------------------------- ...

  4. BZOJ 3173: [Tjoi2013]最长上升子序列 [splay DP]

    3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1613  Solved: 839[Submit][St ...

  5. bzoj 3173 [Tjoi2013]最长上升子序列 (treap模拟+lis)

    [Tjoi2013]最长上升子序列 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2213  Solved: 1119[Submit][Status] ...

  6. bzoj 3173: [Tjoi2013]最长上升子序列【dp+线段树】

    我也不知道为什么把题看成以插入点为结尾的最长生生子序列--还WA了好几次 先把这个序列最后的样子求出来,具体就是倒着做,用线段树维护点数,最开始所有点都是1,然后线段树上二分找到当前数的位置,把这个点 ...

  7. BZOJ 3173 [Tjoi2013] 最长上升子序列 解题报告

    这个题感觉比较简单,但却比较容易想残.. 我不会用树状数组求这个原排列,于是我只好用线段树...毕竟 Gromah 果弱马. 我们可以直接依次求出原排列的元素,每次找到最小并且最靠右的那个元素,假设这 ...

  8. 【BZOJ】3173: [Tjoi2013]最长上升子序列(树状数组)

    [题意]给定ai,将1~n从小到大插入到第ai个数字之后,求每次插入后的LIS长度. [算法]树状数组||平衡树 [题解] 这是树状数组的一个用法:O(n log n)寻找前缀和为k的最小位置.(当数 ...

  9. BZOJ 3173: [Tjoi2013]最长上升子序列 Splay

    一眼切~ 重点是按照 $1$~$n$ 的顺序插入每一个数,这样的话就简单了. #include <cstdio> #include <algorithm> #define N ...

随机推荐

  1. 2019牛客暑期多校训练营(第七场)-C Governing sand

    题目链接:https://ac.nowcoder.com/acm/contest/887/C 题意:有n种树,给出每种数的高度.移除的花费和数量,求最小花费是多少使得剩下树中最高的树的数量占一半以上. ...

  2. setsockopt用法详解

    最近做的一个程序用到了IOCP通信模型,里面用到了setsockopt对套接字进行设置,看源代码的时候最setsockopt函数很不理解,看了msdn以后还是不太明白这个函数的用法,于是就到网上找了一 ...

  3. Python与用户的交互

    目录 Python与用户的交互 为什么交互 如何交互 Python2 中的交互 Python与用户的交互 为什么交互 让我们来回顾计算机的发明有何意义,计算机的发明是为了奴役计算机,解放劳动力.假设我 ...

  4. 关于vs code文本编辑器的快捷键

    另一篇编辑器Sublime Text下载.使用教程.插件推荐说明.全套快捷键 基础编辑 快捷键 作用 Ctrl+X 剪切 Ctrl+C 复制 Ctrl+Shift+K 删除当前行 Ctrl+Enter ...

  5. BZOJ 4835: 遗忘之树

    传送门 首先设 $f[x]$ 表示点分树上 $x$ 的子树内的方案数 发现对于 $x$ 的每个儿子 $v$ ,$x$ 似乎可以向 $v$ 子树内的每个节点连边,因为不管怎么连重心都不会变 显然是错的, ...

  6. 使用AI算法进行手写数字识别

    人工智能   人工智能(Artificial Intelligence,简称AI)一词最初是在1956年Dartmouth学会上提出的,从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展 ...

  7. C Looooops

    看了半天的同余 扩展欧几里得 练练手 C Looooops Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 27079   A ...

  8. asp.net 4.Redirect重定向和文件图片上传

    1.Response.Redirect 如图所示: 1.用户点击修改按钮, 浏览器向服务器发送一个POST请求 http://localhost:6543/UpdateUser.ashx 2.服务器的 ...

  9. B2C电商平台开发心得(asp.net+bootstrap)

    Bootstrap,来自 Twitter,是目前最受欢迎的前端框架.Bootstrap 是基于 html.css.javascript的,专为 web 应用设计,包含了移动设备优先的样式, 其响应式 ...

  10. JS基础_break和continue

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...