BZOJ 3173: [Tjoi2013]最长上升子序列 (线段树+BIT)
先用线段树预处理出每个数最终的位置.然后用BIT维护最长上升子序列就行了.
用线段树O(nlogn)O(nlogn)O(nlogn)预处理就直接倒着做,每次删去对应位置的数.具体看代码
CODE
#include<bits/stdc++.h>
using namespace std;
char cb[1<<15],*cs=cb,*ct=cb;
#define getc() (cs==ct&&(ct=(cs=cb)+fread(cb,1,1<<15,stdin),cs==ct)?0:*cs++)
template<class T>inline void read(T &res) {
char ch; int flg = 1; while(!isdigit(ch=getc()))if(ch=='-')flg=-flg;
for(res=ch-'0';isdigit(ch=getc());res=res*10+ch-'0'); res*=flg;
}
const int MAXN = 100005;
int n, m, x[MAXN], rk[MAXN], ans, sz[MAXN<<2], T[MAXN];
inline void chkmax(int &x, int y) { if(y > x) x = y; }
inline void upd(int x, int val) { for(; x <= n; x += x&-x) chkmax(T[x], val); }
inline int qsum(int x) { int re = 0; for(; x; x -= x&-x) chkmax(re, T[x]); return re; }
inline void upd(int i) { sz[i] = sz[i<<1] + sz[i<<1|1]; }
void build(int i, int l, int r) {
if(l == r) { sz[i] = 1; return; }
int mid = (l + r) >> 1;
build(i<<1, l, mid);
build(i<<1|1, mid+1, r);
upd(i);
}
int query(int i, int l, int r, int k) {
if(l == r) { sz[i] = 0; return l; }
int mid = (l + r) >> 1, re;
if(k <= sz[i<<1]) re = query(i<<1, l, mid, k);
else re = query(i<<1|1, mid+1, r, k-sz[i<<1]);
upd(i); return re;
}
int main() {
read(n); build(1, 1, n);
for(int i = 1; i <= n; ++i) read(x[i]), ++x[i];
for(int i = n; i >= 1; --i) rk[i] = query(1, 1, n, x[i]); //!
for(int i = 1, f; i <= n; ++i) {
chkmax(ans, f = qsum(rk[i]) + 1);
printf("%d\n", ans);
upd(rk[i], f);
}
}
BZOJ 3173: [Tjoi2013]最长上升子序列 (线段树+BIT)的更多相关文章
- BZOJ 3173: [Tjoi2013]最长上升子序列
3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1524 Solved: 797[Submit][St ...
- Bzoj 3173: [Tjoi2013]最长上升子序列 平衡树,Treap,二分,树的序遍历
3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1183 Solved: 610[Submit][St ...
- BZOJ 3173: [Tjoi2013]最长上升子序列( BST + LIS )
因为是从1~n插入的, 慢插入的对之前的没有影响, 所以我们可以用平衡树维护, 弄出最后的序列然后跑LIS就OK了 O(nlogn) --------------------------------- ...
- BZOJ 3173: [Tjoi2013]最长上升子序列 [splay DP]
3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1613 Solved: 839[Submit][St ...
- bzoj 3173 [Tjoi2013]最长上升子序列 (treap模拟+lis)
[Tjoi2013]最长上升子序列 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2213 Solved: 1119[Submit][Status] ...
- bzoj 3173: [Tjoi2013]最长上升子序列【dp+线段树】
我也不知道为什么把题看成以插入点为结尾的最长生生子序列--还WA了好几次 先把这个序列最后的样子求出来,具体就是倒着做,用线段树维护点数,最开始所有点都是1,然后线段树上二分找到当前数的位置,把这个点 ...
- BZOJ 3173 [Tjoi2013] 最长上升子序列 解题报告
这个题感觉比较简单,但却比较容易想残.. 我不会用树状数组求这个原排列,于是我只好用线段树...毕竟 Gromah 果弱马. 我们可以直接依次求出原排列的元素,每次找到最小并且最靠右的那个元素,假设这 ...
- 【BZOJ】3173: [Tjoi2013]最长上升子序列(树状数组)
[题意]给定ai,将1~n从小到大插入到第ai个数字之后,求每次插入后的LIS长度. [算法]树状数组||平衡树 [题解] 这是树状数组的一个用法:O(n log n)寻找前缀和为k的最小位置.(当数 ...
- BZOJ 3173: [Tjoi2013]最长上升子序列 Splay
一眼切~ 重点是按照 $1$~$n$ 的顺序插入每一个数,这样的话就简单了. #include <cstdio> #include <algorithm> #define N ...
随机推荐
- hdoj4812 D Tree(点分治)
题目链接:https://vjudge.net/problem/HDU-4812 题意:给定一颗带点权的树,求是否存在一条路经的上点的权值积取模后等于k,如果存在多组点对,输出字典序最小的. 思路: ...
- [转帖]shell中的特殊符号总结
http://www.embeddedlinux.org.cn/emb-linux/entry-level/201907/18-8747.html 在shell中常用的特殊符号罗列如下: # ; ...
- 【转帖】NAT类型及转换原理深入剖析
NAT类型及转换原理深入剖析 http://www.m6000.cn/other/459.html 2018年8月4日16:40:14发表评论 297 views 大家都知道.NAT是位于内.外网之 ...
- [转帖]Linux 下实践 VxLAN:虚拟机和 Docker 场景
Linux 下实践 VxLAN:虚拟机和 Docker 场景 https://www.cnblogs.com/bakari/p/11264520.html 实践了下 没问题 作者写的很perfect ...
- 编译错误ERROR C2027
一个工程编译时出错! 费了很多时间,增加头文件都不可取,然后把source File文件下分的.cpp文件删除,然后编译通过.
- centos7 使用nginx + tornado + supervisor搭建服务
如何在Linux下部署一个简单的基于Nginx+Tornado+Supervisor的Python web服务. Tornado:官方介绍,是使用Python编写出来的一个极轻量级.高可伸缩性和非阻塞 ...
- python---博客分类目录
python基础 python函数 python模块 python面向对象 网络编程 并发编程 数据库 前端学习 HTML基础 CSS基础 JavaScript基础 js操作BOM和DOM jQuer ...
- 交替方向乘子法(ADMM)的原理和流程的白话总结
交替方向乘子法(ADMM)的原理和流程的白话总结 2018年08月27日 14:26:42 qauchangqingwei 阅读数 19925更多 分类专栏: 图像处理 作者:大大大的v链接:ht ...
- java语言中使用三元式的时候应该注意的问题
今天在项目中改领导要求的代码表现的时候发现了一个很有趣的问题. 但是的代码情况类似如下: 1 2 Integer test1 = null; System.out.println("test ...
- LeetCode:183.从不订购的客户
题目链接:https://leetcode-cn.com/problems/customers-who-never-order/ 题目 某网站包含两个表 Customers 表和 Orders 表.编 ...