【51nod 1245】Binomial Coefficients Revenge
题目大意
C(M,N) = M! / N! / (M - N)! (组合数)。给出M和质数p,求C(M,0), C(M,1)......C(M,M)这M + 1个数中,有多少数不是p的倍数,有多少是p的倍数但不是p2的倍数,有多少是p2的倍数但不是p^3的倍数......。
例如:M = 10, P = 2。C(10,0) -> C(10,10)
分别为:1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1。
P的幂 = 1 2 4 8 16......
1 45 45 1 这4个数只能整除1。
10 210 210 10这4个数能整除2但不能整除4。
252 能整除4但不能整除8。
120 120 这2个数能整除8但不能整除16。
所以输出:4 4 1 2。
分析
根据kummer定理,\(C_{n+m}^{n}\)的含的质数p的幂次等于在p进制下n+m的进位次数。
于是数位dp,设\(f[i][j][0/1]\)表示,做到第i位,进了j次位,当前位是否进位的方案数。
#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
#include <map>
#include <bitset>
#include <set>
#include <vector>
const int inf=2147483647;
const int mo=1e9+7;
const int N=75;
using namespace std;
int T;
long long n,p,f[N][N][2],m,a[N];
int main()
{
for(scanf("%d",&T);T--;)
{
scanf("%lld%lld",&n,&p);
memset(f,0,sizeof(f));
a[0]=0;
for(long long x=n;x;x/=p) a[++a[0]]=x%p;
f[1][0][0]=a[1]+1,f[1][1][1]=p-a[1]-1;
for(int i=1;i<a[0];i++)
for(int j=0;j<=i;j++)
{
f[i+1][j][0]+=(a[i+1]+1)*f[i][j][0]+a[i+1]*f[i][j][1];
f[i+1][j+1][1]+=(p-a[i+1]-1)*f[i][j][0]+(p-a[i+1])*f[i][j][1];
}
for(int i=a[0];i>=0;i--)
if(f[a[0]][i][0])
{
for(int j=0;j<=i;j++) printf("%lld ",f[a[0]][j][0]);
break;
}
putchar('\n');
}
}
【51nod 1245】Binomial Coefficients Revenge的更多相关文章
- 【51NOD 1847】奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数)
[51NOD 1847]奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数) 题面 51NOD \[\sum_{i=1}^n\sum_{j=1}^nsgcd(i,j)^k\] 其中\( ...
- 【51Nod 1769】Clarke and math2
[51Nod 1769]Clarke and math2 题面 51Nod 题解 对于一个数论函数\(f\),\(\sum_{d|n}f(d)=(f\times 1)(n)\). 其实题目就是要求\( ...
- 51nod 1245 Binomial Coefficients Revenge
Description C(M,N) = M! / N! / (M - N)! (组合数).给出M和质数p,求C(M,0), C(M,1)......C(M,M)这M + 1个数中,有多少数不是p的倍 ...
- 【51Nod 1244】莫比乌斯函数之和
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1244 模板题... 杜教筛和基于质因子分解的筛法都写了一下模板. 杜教筛 ...
- 【51Nod 1501】【算法马拉松 19D】石头剪刀布威力加强版
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1501 dp求出环状不连续的前缀和,剩下东西都可以算出来,比较繁琐. 时间 ...
- 【51Nod 1622】【算法马拉松 19C】集合对
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1622 简单题..直接暴力快速幂 #include<cstdio&g ...
- 【51Nod 1616】【算法马拉松 19B】最小集合
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1616 这道题主要是查询一个数是不是原有集合的一个子集的所有数的gcd. ...
- 【51Nod 1674】【算法马拉松 19A】区间的价值 V2
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1674 对区间分治,统计\([l,r]\)中经过mid的区间的答案. 我的 ...
- 【51nod 1785】数据流中的算法
Description 51nod近日上线了用户满意度检测工具,使用高级人工智能算法,通过用户访问时间.鼠标轨迹等特征计算用户对于网站的满意程度. 现有的统计工具只能统计某一个窗口中,用户的满意程 ...
随机推荐
- [转帖]PKI系统深入介绍
PKI系统深入介绍 https://blog.csdn.net/liuhuiyi/article/details/7776825 2012年07月23日 20:17:01 liuhuiyi 阅读数 4 ...
- Spring 如何解决循环依赖问题?
在关于Spring的面试中,我们经常会被问到一个问题,就是Spring是如何解决循环依赖的问题的. 这个问题算是关于Spring的一个高频面试题,因为如果不刻意研读,相信即使读过源码,面试者也不一定能 ...
- HDU 4123 Bob’s Race 树的直径+ST表
Bob’s Race Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=41 ...
- selenium爬取斗鱼所有直播房间信息
还是分析一下大体的流程: 首先还是Chrome浏览器抓包分析元素,这是网址:https://www.douyu.com/directory/all 发现所有房间的信息都是保存在一个无序列表中的li中, ...
- L1-064 估值一亿的AI核心代码 (20 分)
L1-064 估值一亿的AI核心代码 (20 分) 以上图片来自新浪微博. 本题要求你实现一个稍微更值钱一点的 AI 英文问答程序,规则是: 无论用户说什么,首先把对方说的话在一行中原样打印出来: ...
- docker-macvlan网络
部署 A机器:192.168.50.130 B机器:192.168.50.131 Macvlan Bridge模式: 1.创建macvlan网络 A机器: docker network create ...
- Java EE javax.servlet.http中的HttpSession接口
HttpSession接口 public interface HttpSession (https://docs.oracle.com/javaee/7/api/javax/servlet/http/ ...
- MySQL 存储引擎的类型以及选择
针对MySQL,数据最终以什么样的形式保存?以及数据保存在硬盘的什么位置? 1.MySQL的存储引擎 MySQL属于数据管理系统(DBMS),其中包括数据库,负责存储数据:还有数据库访问管理的接口系统 ...
- asp.net 1.HTTP协议
1.概念 协议是指计算机通信网络中两台计算机之间进行通信所必须共同遵守的规定或规则,超文本传输协议(HTTP)是一种通信协议,它允许将超文本标记语言(HTML)文档从Web服务器传送到客户端的浏览器. ...
- Oracle学习笔记:窗口函数
目录 1.测试数据 2.聚合函数+over() 3.partition by子句 4.order by子句 5.序列函数 5.1 分析函数之 ntile 5.2 分析函数之 row_number 5. ...