这题以前就被灌输了“打表找规律”的思想,所以一直没有好好想这道题,过了一年还不太会qwq。虽然好像确实很简单,但是还是带着感觉会被嘲讽的心态写这个题解。。。而且还有一个log做法不会。。。

法1:(一开始没看懂,后由hkk神仙教导ORZ)

因为$ax+by=k$如果无视$\{x,y\}$非负整数解的条件的话,显然由于$gcd(a,b)=1$,所以所有$k$都可以表出。那么依题意如果有$k$不可以表出,是因为受了题目非负整数解条件的限制,也就是$x<0,y<0$,又因为$x,y$不可能同时$<0$,所以就是要求$x,y$异号表出的最大$k$。不妨让$a$项的$x$为负,那么为了保证$x,y$所有的通解都是一正一负,必定可以得出最后取模简化后必须要有$a\in (-b,0),b\in (0,a)$(由扩欧得到,不在这个范围也可以取模得到)。为了最大,$x$必须为$-1$,$b$项必须为$a-1$,这样就可以保证$k$最大了。

所以$k=-a+(a-1)b=ab-a-b$。

法2:(同余类最短路)

有关同余类最短路我在这里写了一下,这里就不啰嗦了。然后根据这个原理,假设$a<b$,设$f[i]$表示$\min\{kb|kb\mod=i\}$,也就是最小可以用$b$的倍数表出的、模$a$余数为$i$的数。这个可以和套路一样建边跑最短路,最后按套路找$\max\{f[i]-a\}$就行了。但是这里数据规模很大。但是有一个特殊性质,$gcd(a,b)=1$,并且这个最短路实际就是从$f[0]$到$f[b\mod a]$到$f[2b\mod a]$,往后跑一条链......所以这个dis越跑越大,一直跑到$f[ab\mod a]=f[0]$发现没法松弛,终止。显然可证中间不会出现$f[kb\mod a]=f[0],k\in[1,a-1]$。那么可以直接得出结论在最后一次$f[(a-1)b\mod a]$的dis最大,因此答案就是$f[(a-1)b\mod a]-a=(a-1)b-a=ab-a-b$.

a,b=map(int,input().split())
print(a*b-a-b)

loj2314 「NOIP2017」小凯的疑惑[同余最短路or数论]的更多相关文章

  1. 【NOIP2017】小凯的疑惑

    原题: 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想知道在无法准确支付的物品中,最贵的价 ...

  2. NOIP2017 D1T1小凯的疑惑

    这应该是近年来最坑的第一题了. 我第一眼看到这题上来就打表,数据范围告诉我复杂度应该是log级的,然而一个小时后才发现是一个输出结论. 设较小数是a 较大数是b 写出几组可以发现一个规律就是一旦出现连 ...

  3. NOIP2017 D1T1 小凯的疑惑

    洛谷P3951 看到题目,很容易想到这一题是求使ax+by=c(a,b,c∈N)无非负整数解的最大c 由裴蜀定理可知方程一定有整数解(a,b互素,gcd(a,b)=1|c) 解法一:暴力枚举 看到题目 ...

  4. LOJ2316. 「NOIP2017」逛公园【DP】【最短路】【思维】

    LINK 思路 因为我想到的根本不是网上的普遍做法 所以常数出奇的大,而且做法极其暴力 可以形容是带优化的大模拟 进入正题: 首先一个很显然的思路是如果在合法的路径网络里面存在零环是有无数组解的 然后 ...

  5. luogu 3951 小凯的疑惑

    noip2017 D1T1 小凯的疑惑 某zz选手没有看出这道结论题,同时写出了exgcd却不会用,只能打一个哈希表骗了30分 题目大意: 两个互质的正整数a和b,求一个最小的正整数使这个数无法表示为 ...

  6. 【比赛】NOIP2017 小凯的疑惑

    找规律:ans=a*b-a-b 证明:(可见 体系知识) gcd(A, B) = 1 → lcm(A, B) = AB 剩余类,把所有整数划分成m个等价类,每个等价类由相互同余的整数组成 任何数分成m ...

  7. 联赛膜你测试20 T1 Simple 题解 && NOIP2017 小凯的疑惑 题解(赛瓦维斯特定理)

    前言: 数学题,对于我这种菜B还是需要多磨啊 Simple 首先它问不是好数的数量,可以转化为用总数量减去是好数的数量. 求"好数"的数量: 由裴蜀定理得,如果某个数\(i\)不能 ...

  8. 「NOIP2017」宝藏

    「NOIP2017」宝藏 题解 博客阅读效果更佳 又到了一年一度NOIPCSP-S 赛前复习做真题的时间 于是就遇上了这道题 首先观察数据范围 \(1 \le n \le 12\) ,那么极大可能性是 ...

  9. 「NOI2013」小 Q 的修炼 解题报告

    「NOI2013」小 Q 的修炼 第一次完整的做出一个提答,花了半个晚上+一个上午+半个下午 总体来说太慢了 对于此题,我认为的难点是观察数据并猜测性质和读入操作 我隔一会就思考这个sb字符串读起来怎 ...

随机推荐

  1. 小菜鸟之HTML第一课

    web项目 前端网页web(人体结构) HTML负责前端网页结构 Css负责网页样式 css引入 内联样式引入 内部样式 外部样式 三种基本引入器 id选择器 类选择器 标签选择器 <!DOCT ...

  2. mybatis-plus代码生成器两版(全部生成+部分生成)

    mybatis-plus代码生成器两版(全部生成+部分生成) 一次性生成全部文件 package com.layuicms.erp.utils; import java.util.List; impo ...

  3. PAT A1035 Password (20)

    AC代码 注意创造函数条件中使用引用 输出语句注意单复数 #include <cstdio> #include <cstring> #include <iostream& ...

  4. 剑指offer10:2*1的小矩形横着或者竖着去覆盖2*n的大矩形,总共有多少种方法?

    1. 题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 2.思路和方法 思路:(下面说到的x*y的矩形,x是宽 ...

  5. matplotlib库之直方图

    例题:假设你获取了250部电影的时长(列表a中),希望统计出这些电影时长的分布状态(比如时长为100分钟到120分钟电影的数量,出现的频率)等信息,你应该如何呈现这些数据? 一些概念及问题: 把数据分 ...

  6. Ruby Rails学习中:调试信息和 Rails 的三种环境,Users 资源,调试器,Gravatar 头像和侧边栏

    注册 一.调试信息和 Rails 环境 现在咱们要实现的用户资料页面是我们这个应用中第一个真正意义上的动态页面.虽然视图的代码不会动态改变, 不过每个用户资料页面显示的内容却是从数据库中读取的.添加动 ...

  7. echart4数据管理组件dataset学习

    背景 如果后台数据固定,如何动态定制其前端数据展示方式呢?也就是说同一种数据,如何被多个前端Echarts图表复用呢?最近在研究一种数据展示可配置化的功能,然后发现了echart4.0的dataset ...

  8. 关于KMP中求next数组的思考【转】

    文章转自 http://www.tuicool.com/articles/yayeIbe.这是我看到关于求next数组,解释最好的一篇文章!!!!!!! KMP的next数组求法是很不容易搞清楚的一部 ...

  9. Selenium IDE for firefox

    第一次接触selenium. 首先, selenium支持的 Firefox版本是17.0~34.x. 打开火狐历史版本:http://ftp.mozilla.org/pub/firefox/rele ...

  10. Jmeter之Linux安装(Xshell),分布式运行Linux作为slave机

    甲方爸爸要求,用Linux压测......   所以在公司服务器Linux上搭建Jmeter 但实际一个Jmeter程序也有程序瓶颈~ 所以在Jmeter瓶颈下,搭建分布式压测系统.(也许可以尝试在一 ...