上代码:

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data #载入数据集
mnist = input_data.read_data_sets("MNIST_data/",one_hot=True) # 输入图片是28*28
n_inputs = 28 #输入一行,一行有28个数据
max_time = 28 #一共28行
lstm_size = 100 #隐层单元
n_classes = 10 # 10个分类
batch_size = 50 #每批次50个样本
n_batch = mnist.train.num_examples // batch_size #计算一共有多少个批次 #这里的none表示第一个维度可以是任意的长度
x = tf.placeholder(tf.float32,[None,784])
#正确的标签
y = tf.placeholder(tf.float32,[None,10]) #初始化权值
weights = tf.Variable(tf.truncated_normal([lstm_size, n_classes], stddev=0.1))
#初始化偏置值
biases = tf.Variable(tf.constant(0.1, shape=[n_classes])) #定义RNN网络
def RNN(X,weights,biases):
# inputs=[batch_size, max_time, n_inputs]
inputs = tf.reshape(X,[-1,max_time,n_inputs])
#定义LSTM基本CELL
lstm_cell = tf.contrib.rnn.BasicLSTMCell(lstm_size)
# final_state[state,batch_size,cell.state_size]
# final_state[0]是cell state
# final_state[1]是hidden_state
# outputs: The RNN output 'Tensor'.
# If time_major == False (default), this will be a `Tensor` shaped:
# `[batch_size, max_time, cell.output_size]`.
# If time_major == True, this will be a `Tensor` shaped:
# `[max_time, batch_size, cell.output_size]`.
# final_state 记录的是最后一次的输出结果
# outputs 记录的是每一次的输出结果 outputs,final_state = tf.nn.dynamic_rnn(lstm_cell,inputs,dtype=tf.float32)
results = tf.nn.softmax(tf.matmul(final_state[1],weights) + biases)
return results #计算RNN的返回结果
prediction= RNN(x, weights, biases)
#损失函数
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=prediction,labels=y))
#使用AdamOptimizer进行优化
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
#结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))#把correct_prediction变为float32类型
#初始化
init = tf.global_variables_initializer() with tf.Session() as sess:
sess.run(init)
for epoch in range(6):
for batch in range(n_batch):
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys}) acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
print ("Iter " + str(epoch) + ", Testing Accuracy= " + str(acc))

训练结果:

Iter 0, Testing Accuracy= 0.6474
Iter 1, Testing Accuracy= 0.8439
Iter 2, Testing Accuracy= 0.8876
Iter 3, Testing Accuracy= 0.9033
Iter 4, Testing Accuracy= 0.9039
Iter 5, Testing Accuracy= 0.9236

TensorFlow(十二):使用RNN实现手写数字识别的更多相关文章

  1. 5 TensorFlow入门笔记之RNN实现手写数字识别

    ------------------------------------ 写在开头:此文参照莫烦python教程(墙裂推荐!!!) ---------------------------------- ...

  2. TensorFlow(十):卷积神经网络实现手写数字识别以及可视化

    上代码: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = inpu ...

  3. TensorFlow使用RNN实现手写数字识别

    学习,笔记,有时间会加注释以及函数之间的逻辑关系. # https://www.cnblogs.com/felixwang2/p/9190664.html # https://www.cnblogs. ...

  4. Tensorflow项目实战一:MNIST手写数字识别

    此模型中,输入是28*28*1的图片,经过两个卷积层(卷积+池化)层之后,尺寸变为7*7*64,将最后一个卷积层展成一个以为向量,然后接两个全连接层,第一个全连接层加一个dropout,最后一个全连接 ...

  5. TensorFlow卷积神经网络实现手写数字识别以及可视化

    边学习边笔记 https://www.cnblogs.com/felixwang2/p/9190602.html # https://www.cnblogs.com/felixwang2/p/9190 ...

  6. 第二节,TensorFlow 使用前馈神经网络实现手写数字识别

    一 感知器 感知器学习笔记:https://blog.csdn.net/liyuanbhu/article/details/51622695 感知器(Perceptron)是二分类的线性分类模型,其输 ...

  7. Tensorflow之MNIST手写数字识别:分类问题(1)

    一.MNIST数据集读取 one hot 独热编码独热编码是一种稀疏向量,其中:一个向量设为1,其他元素均设为0.独热编码常用于表示拥有有限个可能值的字符串或标识符优点:   1.将离散特征的取值扩展 ...

  8. keras和tensorflow搭建DNN、CNN、RNN手写数字识别

    MNIST手写数字集 MNIST是一个由美国由美国邮政系统开发的手写数字识别数据集.手写内容是0~9,一共有60000个图片样本,我们可以到MNIST官网免费下载,总共4个.gz后缀的压缩文件,该文件 ...

  9. 【转】机器学习教程 十四-利用tensorflow做手写数字识别

    模式识别领域应用机器学习的场景非常多,手写识别就是其中一种,最简单的数字识别是一个多类分类问题,我们借这个多类分类问题来介绍一下google最新开源的tensorflow框架,后面深度学习的内容都会基 ...

随机推荐

  1. python 流程判断

    import getpass# print("hello word") ## name= 'pangxiao'# mix_name=name# print(mix_name,nam ...

  2. spring 条件化配置

    步骤一: 实现接口:org.springframework.context.annotation.Condition import org.springframework.context.annota ...

  3. MyBatis Generator 自动生成的POJO对象的使用(二)

    四.Example Class使用说明 示例类指定如何构建动态where子句. 表中的每个非BLOB列都可以选择包含在where子句中. 示例是演示此类用法的最佳方法. 示例类可用于生成几乎无限制的w ...

  4. 解决Vs控制台程序出现NuGet\profile.ps1,因为在此系统上禁止运行脚本错误时或提示:“无法加载文件 \.nuget\packages\Microsoft.EntityFrameworkCore.Tools\1.1.0-preview4-final\tools\init.ps1,因为在此系统上禁止运行脚本”

    1,打开Windows PowerShell 2.输入 set-executionpolicy remotesigned 即可执行脚本 如果执行命令失败的话重新选择Windows PowerShell ...

  5. 动画 jquery-transit

    <script type="text/javascript" src="js/jquery.min.js"></script> < ...

  6. CSS ,flex: 1的用处

    flex: 1:的妙用 首先  flex 是 flex-grow.flex-shrink.flex-basis的缩写. 当 flex 取值为一个非负数字,则该数字为 flex-grow 值,flex- ...

  7. 如何给SAP云平台的账号分配Leonardo机器学习服务的实例

    首先点击Entitlements下面的Service Assignments,查看是否有SAP Leonardo Machine Learning Foundation这个服务: 点击SubAccou ...

  8. Linux的desktop文件正常编写赋权,仍无法打开解决办法

    Linux的desktop文件正常编写赋权,仍无法打开解决办法 如果你像我一样遇到了这个问题, 明明都没有问题, desktop文件不显示图标, 双击打开是文本编辑器, 同时也有执行权限 打开却是这样 ...

  9. k8s的pod的资源调度

    1.常用的预选策略 2.优选函数 3.节点亲和调度 3.1.节点硬亲和性 3.2.节点软亲和性 4.Pod资源亲和调度 4.1.Pod硬亲和度 4.2.Pod软亲和度 4.3.Pod反亲和度 5.污点 ...

  10. TODO Android +jacoco的增量覆盖率测试和一些概念

    查了下资料,工具要用mac开发,,,,陷入窘境,正在寻找替代方案. Android中的jacoco只支持offline模式,spring支持on-the-fly(在加载class文件进行,运用java ...