上代码:

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data #载入数据集
mnist = input_data.read_data_sets("MNIST_data/",one_hot=True) # 输入图片是28*28
n_inputs = 28 #输入一行,一行有28个数据
max_time = 28 #一共28行
lstm_size = 100 #隐层单元
n_classes = 10 # 10个分类
batch_size = 50 #每批次50个样本
n_batch = mnist.train.num_examples // batch_size #计算一共有多少个批次 #这里的none表示第一个维度可以是任意的长度
x = tf.placeholder(tf.float32,[None,784])
#正确的标签
y = tf.placeholder(tf.float32,[None,10]) #初始化权值
weights = tf.Variable(tf.truncated_normal([lstm_size, n_classes], stddev=0.1))
#初始化偏置值
biases = tf.Variable(tf.constant(0.1, shape=[n_classes])) #定义RNN网络
def RNN(X,weights,biases):
# inputs=[batch_size, max_time, n_inputs]
inputs = tf.reshape(X,[-1,max_time,n_inputs])
#定义LSTM基本CELL
lstm_cell = tf.contrib.rnn.BasicLSTMCell(lstm_size)
# final_state[state,batch_size,cell.state_size]
# final_state[0]是cell state
# final_state[1]是hidden_state
# outputs: The RNN output 'Tensor'.
# If time_major == False (default), this will be a `Tensor` shaped:
# `[batch_size, max_time, cell.output_size]`.
# If time_major == True, this will be a `Tensor` shaped:
# `[max_time, batch_size, cell.output_size]`.
# final_state 记录的是最后一次的输出结果
# outputs 记录的是每一次的输出结果 outputs,final_state = tf.nn.dynamic_rnn(lstm_cell,inputs,dtype=tf.float32)
results = tf.nn.softmax(tf.matmul(final_state[1],weights) + biases)
return results #计算RNN的返回结果
prediction= RNN(x, weights, biases)
#损失函数
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=prediction,labels=y))
#使用AdamOptimizer进行优化
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
#结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))#把correct_prediction变为float32类型
#初始化
init = tf.global_variables_initializer() with tf.Session() as sess:
sess.run(init)
for epoch in range(6):
for batch in range(n_batch):
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys}) acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
print ("Iter " + str(epoch) + ", Testing Accuracy= " + str(acc))

训练结果:

Iter 0, Testing Accuracy= 0.6474
Iter 1, Testing Accuracy= 0.8439
Iter 2, Testing Accuracy= 0.8876
Iter 3, Testing Accuracy= 0.9033
Iter 4, Testing Accuracy= 0.9039
Iter 5, Testing Accuracy= 0.9236

TensorFlow(十二):使用RNN实现手写数字识别的更多相关文章

  1. 5 TensorFlow入门笔记之RNN实现手写数字识别

    ------------------------------------ 写在开头:此文参照莫烦python教程(墙裂推荐!!!) ---------------------------------- ...

  2. TensorFlow(十):卷积神经网络实现手写数字识别以及可视化

    上代码: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = inpu ...

  3. TensorFlow使用RNN实现手写数字识别

    学习,笔记,有时间会加注释以及函数之间的逻辑关系. # https://www.cnblogs.com/felixwang2/p/9190664.html # https://www.cnblogs. ...

  4. Tensorflow项目实战一:MNIST手写数字识别

    此模型中,输入是28*28*1的图片,经过两个卷积层(卷积+池化)层之后,尺寸变为7*7*64,将最后一个卷积层展成一个以为向量,然后接两个全连接层,第一个全连接层加一个dropout,最后一个全连接 ...

  5. TensorFlow卷积神经网络实现手写数字识别以及可视化

    边学习边笔记 https://www.cnblogs.com/felixwang2/p/9190602.html # https://www.cnblogs.com/felixwang2/p/9190 ...

  6. 第二节,TensorFlow 使用前馈神经网络实现手写数字识别

    一 感知器 感知器学习笔记:https://blog.csdn.net/liyuanbhu/article/details/51622695 感知器(Perceptron)是二分类的线性分类模型,其输 ...

  7. Tensorflow之MNIST手写数字识别:分类问题(1)

    一.MNIST数据集读取 one hot 独热编码独热编码是一种稀疏向量,其中:一个向量设为1,其他元素均设为0.独热编码常用于表示拥有有限个可能值的字符串或标识符优点:   1.将离散特征的取值扩展 ...

  8. keras和tensorflow搭建DNN、CNN、RNN手写数字识别

    MNIST手写数字集 MNIST是一个由美国由美国邮政系统开发的手写数字识别数据集.手写内容是0~9,一共有60000个图片样本,我们可以到MNIST官网免费下载,总共4个.gz后缀的压缩文件,该文件 ...

  9. 【转】机器学习教程 十四-利用tensorflow做手写数字识别

    模式识别领域应用机器学习的场景非常多,手写识别就是其中一种,最简单的数字识别是一个多类分类问题,我们借这个多类分类问题来介绍一下google最新开源的tensorflow框架,后面深度学习的内容都会基 ...

随机推荐

  1. session和cookie有什么区别?

    1.存储位置不同 cookie的数据信息存放在客户端浏览器上. session的数据信息存放在服务器上. 2.存储容量不同 单个cookie保存的数据<=4KB,一个站点最多保存20个Cooki ...

  2. Spring Cloud Alibaba学习笔记(14) - Spring Cloud Stream + RocketMQ实现分布式事务

    发送消息 在Spring消息编程模型下,使用RocketMQ收发消息 一文中,发送消息使用的是RocketMQTemplate类. 在集成了Spring Cloud Stream之后,我们可以使用So ...

  3. 深入分析CAS

    CAS,Compare And Swap,即比较并交换.Doug lea大神在同步组件中大量使用CAS技术鬼斧神工地实现了Java多线程的并发操作.整个AQS同步组件.Atomic原子类操作等等都是以 ...

  4. Centos 配置eth0 提示Device does not seem to be present -- 转载

    http://www.cnblogs.com/fbwfbi/archive/2013/04/29/3050907.html 移动虚拟机造成网卡无法识别 一.故障现象: [root@c1node01 ~ ...

  5. ESLint——从零学起

    介绍 ESLint最初是由Nicholas C. Zakas于2013年6月创建的开源项目.它的目标是提供一个插件化的javascript代码检测工具.因此,ESLint就是一个语法规则和代码风格的检 ...

  6. jquery-weui滚动事件的注册与注销

    注册infinite(50)是自定义的,详细暂时没去了解,可以不写即代表默认值. // body是整一块代码的标签,也就是滚动的部分. $('body').infinite().on("in ...

  7. linux 安装mysql(rpm文件安装)

    三 卸载旧版本的MySql (没有的话,则跳过此步骤)       1.查看旧版本MySql       rpm -qa | grep mysql       将会列出旧版本MySql的组件列表,如: ...

  8. C#-DBHelper

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  9. CentOS7 安装记录

    起因是想自建一个本地笔记云存储,按照网上的教程搭建,卡在了其中的一个步骤上(文章见https://www.laobuluo.com/1542.html),卡在了如下图的位置,google了一番解决的办 ...

  10. Linux常用命令【1】

    打包和压缩文件 : cd /home 进入 '/ home' 目录' cd .. 返回上一级目录 cd ../.. 返回上两级目录 cd 进入个人的主目录 cd ~user1 进入个人的主目录 cd ...