Day3 && Day4
本章内容对我来说真的是学的稀里糊涂的,除了前两题吭哧吭哧独立完成,第三题参考了别人的思路外,其余题目均是现学现卖,有点迷啊。所以写这篇博客的目的是先记录下聚聚们对本章内容相关重点的要求,并搜集一些相关资料,慢慢学吧。
D - GCD & LCM Inverse
题意:
给出两个整数 m、n ( < 2^63),求出两个整数 a、b ,使gcd(a, b)=m , lcm(a, b)=n ,并取 a + b 值最小的那一组。
Thinking:
拿到题看到数据范围后想了想没有思路。看了很多博客,对此题的化简分析有了认识,但实现本题所用的很多知识:
如:Miller-Rabin素性测试算法 和 进行素数分解的Pollard_Rho算法 却一头雾水。
在这里贴上一些博客供以后学习使用:
1、 https://blog.csdn.net/ECNU_LZJ/article/details/72675595
2、 https://blog.csdn.net/semiwaker/article/details/60142102
3 、https://blog.csdn.net/maxichu/article/details/45459533
4 、https://www.cnblogs.com/Norlan/p/5350243.html
5 、https://wenku.baidu.com/view/fbbed5a5f524ccbff12184af.html
通过化简使gcd(a1, b1)=1, 则 lcm(a1, b1)=n/m=s , 把s分解成两互质数s1, s2相乘的形式,这里由于n的范围过大,所以需要用到Miller_Rabin和Pollard_Rho算法将s分解。
要是a+b最小,则要使s1和s2越接近(初中的不等式知识可以证明),此处需要用到dfs()枚举s的num个互质的数如何组合成s1,s2并满足其差最小(这种枚举技巧学习了)。
(代码借鉴了很多前辈的,因为太多就不贴出处了,但还是要说声谢谢分享。)
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
using namespace std;
#define LL long long LL qmul(LL a, LL b, LL c){
a %= c;
b %= c;
LL res = ;
while(b){
if(b&){
res = (res+a)%c;
}
a = (a+a)%c;
b >>= ;
}
return res;
}
LL qmodx(LL a, LL b, LL c){
a %= c;
b %= c;
if(c <= )
return a * b % c;
return (a * b - (LL)(a / (long double)c*b + 1e-) *c + c) % c;
}
LL qmod(LL a, LL b, LL c){
LL res = ;
while(b){
if(b&){
res = qmul(res, a, c);
}
b >>= ;
a = qmul(a, a, c)%c;
}
return res;
}
//以a为基,n-1=x*2^t a^(n-1)=1(mod n) 验证n是不是合数
//一定是合数返回true,不一定返回false
/*//////
?????
*////////
bool check(LL a, LL n, LL x, LL t){
LL ret = qmod(a, x, n);
LL last = ret;
for(int i=; i<=t; i++){
ret = qmul(ret, ret, n);
if(ret == && last!= && last!=(n-)) return true;
last = ret;
}
if(ret != ) return true;
return false;
}
////////----------
// Miller_Rabin()算法素数判定
//是素数返回true.(可能是伪素数,但概率极小)
//合数返回false;
bool Miller_Rabin(LL n, int S){
if(n < ) return false;
if(n == ) return true;
if((n&) == ) return false;
LL x = n-, t = ;
while((x&) == ){
x >>= ;
t++;
}
for(int i=; i<S; i++){
LL a = rand()%(n-) + ;
if(check(a, n, x, t)){
return false;
}
}
return true;
}
///////////------------
//************************************************
//pollard_rho 算法进行质因数分解
//************************************************
///////////----------
int factor[];//质因数分解结果(刚返回时是无序的)
int tol;//质因数的个数。数组小标从0开始
LL gcd(LL a, LL b){
if(a==) return ;
if(a < ) return gcd(-a, b);
while(b){
LL t = a % b;
a = b;
b = t;
}
return a;
}
LL Pollard_rho(LL x, LL c){
LL i = , k = ;
LL x0 = rand()%x;
LL y = x0;
while(){
i++;
x0 = (qmul(x0, x0, x) + c)%x;
LL d = gcd(y-x0, x);
if(d != && d != x) return d;
if(y == x0) return x;
if(i == k){
y = x0;
k += k;
}
}
}
void findfac(LL n){
if(Miller_Rabin(n, )){
factor[tol++] = n;
return;
}
LL p = n;
while(p >= n){
p = Pollard_rho(p, rand()%(n-)+);
}
findfac(p);
findfac(n/p);
}
///////---------
LL r[];
int num;
LL k, sq;
void dfs(LL now, int x){
if( now > sq ) return;
k = max(k, now);
for(int i=x; i<=num; i++){
dfs(now*r[i], i+);
}
} int main(){
LL gc, lc, n;
while(scanf("%lld%lld", &gc, &lc) != EOF){
if(gc == lc){
printf("%lld %lld\n", gc, lc);
continue;
}
tol = ;
n = lc/gc;
findfac(n); sort(factor, factor + tol);
num = ;
for(int i=; i<=; i++) r[i] = ;
r[num] = factor[];
for(int i=; i<tol; i++){
if(factor[i] == factor[i-]){
r[num] *= factor[i];
}else{
r[++num] = factor[i];
}
}
k = ; sq = (LL)sqrt(1.0*n);
dfs(, );
printf("%lld %lld\n", k*gc, lc/k);
}
return ;
}
F - GCD
题意: 求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d)。注意[(x=5, y=7) and (x=7, y=5) are considered to be the same.]
听赵巨说此题有两种解法,可惜我都不会。
1、本题是一道莫比乌斯反演,就通过这道题了解并学习下。
同样贴出学习用到的博客地址:
下面给出两种mobius函数的求法:
/*
时间复杂度O(nlogn)
这种筛法思路有点奇妙
*/
#include <cstdio>
const int maxn = ;
int mu[maxn+];
void get_mu1(){
for(int i=;i<maxn;++i){
int delta = (i== ? -mu[i] : -mu[i]);
mu[i]=delta;
for(int j=*i;j<N;j+=i)
mu[j]+=delta;
}
}
int main(){
get_mu1();
for(int i=; i<maxn; i++){
printf("i = %d mu[%d] = %d\n",i, i, mu[i]);
}
return ;
}
/*
时间复杂度O(n)
这种筛法思路有点像 线性素数筛
去掉////则为线性素数筛法
*/
#include <cstdio>
const int maxn = ;
int mu[maxn+], p[maxn+], vis[maxn+];
void get_mu2(int &cnt){
mu[] = ;
cnt = ;
for(int i=; i<maxn; i++){
if(!vis[i]){
p[cnt++] = i;
mu[i] = -; ////
}
for(int j=; j<cnt && i*p[j]<maxn; j++){
vis[i*p[j]] = ;
if(i % p[j]){ ////
mu[i*p[j]] = -mu[i];
}else{
mu[i*p[j]] = ; ////
break;
}
}
}
}
int main(){
int cnt;
get_mu2(cnt);
for(int i=; i<maxn; i++){
printf("i = %d mu[%d] = %d\n",i, i, mu[i]);
}
return ;
}
本题最重要的应该是构造出 f 和 F 两函数并找出其关系,然后通过约数莫比乌斯反演或倍数莫比乌斯反演的转换。
比较难思考的是构造……
#include <cstdio>
#include <algorithm>
using namespace std;
#define LL long long
const int maxn = 1e5+;
int mu[maxn+], p[maxn+], vis[maxn+];
void get_mu2(int &cnt){
mu[] = ;
cnt = ;
for(int i=; i<maxn; i++){
if(!vis[i]){
p[cnt++] = i;
mu[i] = -;
}
for(int j=; j<cnt && i*p[j]<maxn; j++){
vis[i*p[j]] = ;
if(i % p[j]){
mu[i*p[j]] = -mu[i];
}else{
mu[i*p[j]] = ;
break;
}
}
}
}
int main(){
int cnt;
get_mu2(cnt);
int T, a, b, c, d, k;
scanf("%d", &T);
for(int t=; t<=T; t++){
scanf("%d%d%d%d%d", &a, &b, &c, &d, &k);
printf("Case %d: ", t);
if(k == ){
printf("0\n");
continue;
}
b /= k; d /= k;
LL ans1 = , ans2 = ;
int mi = min(b,d);
for(int i=; i<=mi; i++){
ans1 += (LL)mu[i]*(b/i)*(d/i);
}
for(int i=; i<=mi; i++){
ans2 += (LL)mu[i]*(mi/i)*(mi/i);
}
printf("%lld\n", ans1-ans2/);
}
return ;
}
2、可以用欧拉函数+容斥原理,将问题求(1,n)和(1,m)内素数对的问题转化为 (1,n)内欧拉函数和(的问题)与 (1,n)和(n+1,m)内素数对(的问题)。
关于欧拉函数放上我学习过的文章:
第二个问题容斥原理有3种方法:队列数组 dfs 位运算
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define LL long long
const int maxn = ;
int prime[maxn+];
//线性素数筛法筛出素数表
void getprime(){ //prime[0]记录素数表的长度
memset(prime, , sizeof(prime));
for(int i=; i<=maxn; i++){
if(!prime[i]){
prime[++prime[]] = i;
}
for(int j=; j<=prime[] && prime[j]<=maxn/i; j++){
//除法防溢出
prime[i*prime[j]] = ;
if(i%prime[j] == ) break;
}
}
}
// 算术展开
LL factor[][]; //[0][i]:第i个素数值 [1][i]:第i个素数的个数
int fatcnt;
void getfactors(LL x){
fatcnt = ;
LL tmp = x;
for(int i=; prime[i] <= tmp/prime[i]; i++){
factor[][fatcnt] = ;
if(tmp % prime[i] == ){
factor[][fatcnt] = prime[i];
while(tmp % prime[i] == ){
factor[][fatcnt]++;
tmp /= prime[i];
}
fatcnt++;
}
}
if(tmp != ){
factor[][fatcnt] = tmp;
factor[][fatcnt++] = ;
}
}
//欧拉函数打表
int euler[];
void geteuler(){
memset(euler, , sizeof(euler));
euler[] = ;
for(int i=; i<=; i++){
if(!euler[i]){
for(int j=i; j <= ; j += i){
if(!euler[j]){
euler[j] = j;
}
euler[j] = euler[j]/i*(i-);
}
}
}
}
//用位运算实现(1,n)内和m互质的个数 ////n<m
///这里代码比较好理解,可以对比赵巨讲的那个2R/7的例子,或者容斥的定义来写
int calc(int n, int m){
getfactors(m);
int ans = ;
///用二进制枚举m的几个素因子被用到
for(int i=; i < (<<fatcnt); i++){
int cnt = ;
int tmp = ;
for(int j=; j<fatcnt; j++){
//目前第几个因子被使用
if(i & (<<j)){
cnt++;
tmp *= factor[][j];
}
}
if(cnt & ){
ans += n/tmp;
}else{
ans -= n/tmp;
}//容斥原理
}
return (n - ans);
}
int main(){
getprime();
geteuler();
int a, b, c, d, k, T;
scanf("%d", &T);
for(int t=; t<=T; t++){
scanf("%d%d%d%d%d", &a, &b, &c, &d, &k);
printf("Case %d: ", t);
if(k== || k>b || k>d){
printf("0\n");
continue;
}
if(b > d) swap(b,d);
b /= k; d /= k;
LL ans = ;
for(int i=; i<=b; i++){
ans += (LL)euler[i];
}
for(int i=b+; i<=d; i++){
ans += (LL)calc(b, i);
}
printf("%lld\n", ans);
}
return ;
}
G - Semi-prime H-numbers
题意:
定义一个数,称之为H-numbers,性质:除4余1;
数分三种:1、unit即1; 2、H-primes:满足H-numbers性质的素数; 3、剩下的是H-composite;
H-semi-prime:两个H-prime相乘;
求h内有多少个H-semi-prime?
Thinking:
就按定义去筛出H-semi-prime数。
#include <cstdio>
#include <cstring>
#define LL long long
const int maxn = ;
int hprime[maxn+];
int vis[maxn+];
int hcnt;
void getprime(){
for(int i=; i<=maxn; i+=){
for(int j=; (i*j<=maxn)&&(j<=maxn); j+=){
if(!vis[i] && !vis[j]){
vis[i*j] = ;
}else{
vis[i*j] = -;
//!(-1)==0
}
}
}
hcnt = ;
for(int i=; i<=maxn; i++){
if(vis[i] == ){
hcnt++;
}
hprime[i] = hcnt;
}
}
int main(){
getprime();
int h;
while(scanf("%d", &h) && h){
printf("%d %d\n", h, hprime[h]);
}
return ;
}
Day3 && Day4的更多相关文章
- Python--Day2/Day3/Day4(运算符、数据类型及内建函数)
一.昨日内容回顾 Python种类:CPython(Python).JPython.IronPython.PyPy 编码: Unicode.UTF-8.GBK while循环 if...elif... ...
- 【Beta版本】七天冲刺——日志集合贴
No Bug 031402401鲍亮 031402402曹鑫杰 031402403常松 031402412林淋 031402418汪培侨 031402426许秋鑫 Day1 Day2 Day3 Day ...
- 软件工程(FZU2015)赛季得分榜,第11回合(beta冲刺+SE总结)
目录 第一回合 第二回合 第三回合 第四回合 第五回合 第6回合 第7回合 第8回合 第9回合 第10回合 第11回合 增补作业 积分规则 积分制: 作业为10分制,练习为3分制:alpha30分:b ...
- 【Alpha版本】十天冲刺——日志集合贴
No Bug 031402401鲍亮 031402402曹鑫杰 031402403常松 031402412林淋 031402418汪培侨 031402426许秋鑫 Day1 Day2 Day3 Day ...
- 一起买beta版本文档报告汇总
一起买beta版本文档报告汇总 031402401鲍亮 031402402曹鑫杰 031402403常松 031402412林淋 031402418汪培侨 031402426许秋鑫 一.Beta版本冲 ...
- 一起买Beta版本系列文档
一起买beta版本文档报告汇总 031402401鲍亮 031402402曹鑫杰 031402403常松 031402412林淋 031402418汪培侨 031402426许秋鑫 一.Beta版本冲 ...
- 报错:对象必须实现 IConvertible;以分隔符进行分割链接concat_ws的使用方法;mysql数据类型转换cast,convert
错误故障,mysql 服务器上用 concat_ws 函数,连接了一串数字,最后 服务器返回的字段就变成了一个 byte ,而我们想要的类型是 string 类型,那么转换的时候,就报错了. 正确 ...
- WC2019冬眠记
Day0 报道日就当做Day0吧. 上午起床比较晚,起来就开始整理东西准备搬到广二的高中部去,搬了两趟,因为没吃早饭,头就很晕,吓得我赶快把之前发的士力架给吃了. 上午李姐姐和我们聊了聊\(THUWC ...
- 软件工程(FZU2015) 赛季得分榜,第11回合(beta冲刺+SE总结)
SE_FZU目录:1 2 3 4 5 6 7 8 9 10 11 12 13 积分规则 积分制: 作业为10分制,练习为3分制:alpha30分:beta30分 团队项目分=团队得分+个人贡献分 个人 ...
随机推荐
- java线程基础巩固---Daemon线程的创建以及使用场景分析
daemon线程既守护线程,而在jdk中对于Thread中针对守护线程有专门的API,如下: 而之前在公司项目中就看到过有人使用过Thread中的这个API,但是对于它的使用场景完全不知,所以这次好好 ...
- SpringBoot使用JPA来做数据查询
Spring-Data-JPA在做数据存储方面真的很方便,它的目的就是写更少的代码,更多的事情,但是也有其力有未逮或者说处理起来比较闹心的地方. 1.先来感受一下使用JPA做数据查询时,代码的简化程度 ...
- Git使用教程学习
Git使用教程学习 在第十二周的个人作业上,王文娟老师希望我们去自己课后了解一下git的使用方式以及一些基础知识,在本学期其他的课程上,我们已经稍微了解过一些git的基础知识,因此在本次作业里,我补充 ...
- 2019.9.30 ErrorWidget 的使用
开发过程中总会碰见页面出现错误的情况,这时候整个页面一片红, 如下 测试阶段出现这样的问题就算了,万一正式环境也出现这个就要不和谐了.所以就有了ErrorWidget.这个是要在最底层设置一下就可以屏 ...
- 理论基础+实战控制台程序实现AutoFac注入
[半小时大话.net依赖注入](一)理论基础+实战控制台程序实现AutoFac注入 系列目录# 第一章|理论基础+实战控制台程序实现AutoFac注入 第二章|AutoFac的常见使用套路 第三章 ...
- js栈和堆的区别
一. 堆(heap)和栈(stack) 栈(stack)会自动分配内存空间,会自动释放.堆(heap)动态分配的内存,大小不定也不会自动释放. 二. 基本类型和引用类型 基本类型:简单的数据段,存 ...
- 一秒钟解决mysql使用游标出现取值乱码问题
drop procedure if exists pro_test; delimiter // create procedure pro_test() begin declare str varcha ...
- TensorFlow - 深度学习破解验证码 实验
TensorFlow - 深度学习破解验证码 简介:验证码主要用于防刷,传统的验证码识别算法一般需要把验证码分割为单个字符,然后逐个识别,如果字符之间相互重叠,传统的算法就然并卵了,本文采用cnn对验 ...
- Jmeter接口测试之用例数据分离
之前我们的用例数据都是配置在 Jmeter Http 请求中,每次需要增加,修改用例都需要打开 jmeter 重新编辑,当用例越来越多的时候,用例维护起来就越来越麻烦,有没有好的方法来解决这种情况呢? ...
- JVM(二),Java怎样实现一次编译到处运行(平台无关性)
二.Java怎样实现一次编译到处运行(平台无关性) 1.java平台无关性原理 Java源码首先被编译成字节码,再由不同平台的JVM进行解析,JAVA语言在不同的平台上运行时不需要进行重新编译,Jav ...