洛谷 题解 P4158 【[SCOI2009]粉刷匠】
状态:
dp[i][j][k][0/1]
:
到达第i行时,
到达第j列时,
刷到第k次时,
这一格有没有刷对
转移
- 换一块木板时肯定要多刷一次
dp[i][j][k][0]=max(dp[i-1][m][k-1][0],dp[i-1][m][k-1][1]);
dp[i][j][k][1]=max(dp[i-1][m][k-1][0],dp[i-1][m][k-1][1])+1;
- 当前格子与上一个格子颜色相同时
/*
,最优的方式是把前一个的1状态原封不动转移,这时的0状态也跟着原封不动(贪心)
*/
dp[i][j][k][1]=dp[i][j-1][k][1]+1;//继续刷下去
dp[i][j][k][0]=dp[i][j-1][k][0];//贪心,原封不动转移
- 当前格子与上一个格子颜色不相同时
/*
[1]有两个选择: 一个是牺牲一次k换种颜色刷,另一个是继续上一格的颜色
[0]也要贪心,因为这一格跟上一个不一样,所以如果要继续刷错,可能是从上一次[1]原封不动过来,可能是再用一刷使得刷错.
*/
dp[i][j][k][1]=max(dp[i][j-1][k-1][1],dp[i][j-1][k][0])+1;
dp[i][j][k][0]=max(dp[i][j-1][k][1],dp[i][j-1][k-1][0]);
代码:
#include<bits/stdc++.h>
using namespace std;
int n,m,t;
char p[55][55];
int dp[55][55][2501][2];
inline int read()
{
int tot=0;
char c=getchar();
while(c<'0'||c>'9')
c=getchar();
while(c>='0'&&c<='9')
{
tot=tot*10+c-'0';
c=getchar();
}
return tot;
}
int main()
{
n=read();m=read();t=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)cin>>p[i][j];
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
for(int k=1;k<=t;k++)
{
if(j==1)
{
dp[i][j][k][0]=max(dp[i-1][m][k-1][0],dp[i-1][m][k-1][1]);
dp[i][j][k][1]=max(dp[i-1][m][k-1][0],dp[i-1][m][k-1][1])+1;
continue;
}
if(p[i][j]==p[i][j-1])
{
dp[i][j][k][1]=dp[i][j-1][k][1]+1;
dp[i][j][k][0]=dp[i][j-1][k][0];
}
else
{
dp[i][j][k][1]=max(dp[i][j-1][k-1][1],dp[i][j-1][k][0])+1;
dp[i][j][k][0]=max(dp[i][j-1][k][1],dp[i][j-1][k-1][0]);
}
}
}
}
cout<<max(dp[n][m][t][1],dp[n][m][t][0])<<endl;
return 0;
}
参考
洛谷 题解 P4158 【[SCOI2009]粉刷匠】的更多相关文章
- Luogu P4158 [SCOI2009]粉刷匠(dp+背包)
P4158 [SCOI2009]粉刷匠 题意 题目描述 \(windy\)有\(N\)条木板需要被粉刷.每条木板被分为\(M\)个格子. 每个格子要被刷成红色或蓝色. \(windy\)每次粉刷,只能 ...
- 【题解】洛谷P4158 [SCOI2009] 粉刷匠(DP)
次元传送门:洛谷P4158 思路 f[i][j][k][0/1]表示在坐标为(i,j)的格子 已经涂了k次 (0是此格子涂错 1是此格子涂对)涂对的格子数 显然的是 每次换行都要增加一次次数 那么当j ...
- P4158 [SCOI2009]粉刷匠(洛谷)
今天A了个紫(我膨胀了),他看起来像个贪心一样,老师说我写的是dp(dp理解不深的缘故QWQ) 直接放题目描述(我旁边有个家伙让我放链接,我还是说明出处吧(万一出处没有了)我讲的大多数题目都是出自洛谷 ...
- 洛谷 P4158 [SCOI2009]粉刷匠 题解
每日一题 day59 打卡 Analysis 很容易看出是一个dp, dp[i][j[k][0/1]来表示到了(i,j)时,刷了k次,0表示这个没刷,1表示刷了. 于是有转移: 1.换行时一定要重新刷 ...
- 洛谷P4158 [SCOI2009]粉刷匠
传送门 设$dp[i][j][k][0/1]$表示在涂点$(i,j)$,涂了$k$次,当前点的颜色是否对,最多能刷对多少个格子 首先换行的时候肯定得多刷一次 然后是如果和前一个格子颜色相同,那么当前点 ...
- P4158[SCOI2009]粉刷匠
题目描述 windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个格子最多只能被 ...
- 背包 DP【洛谷P4158】 [SCOI2009]粉刷匠
P4158 [SCOI2009]粉刷匠 windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上 ...
- 【BZOJ1296】[SCOI2009]粉刷匠(动态规划)
[BZOJ1296][SCOI2009]粉刷匠(动态规划) 题面 BZOJ 洛谷 题解 一眼题吧. 对于每个串做一次\(dp\),求出这个串刷若干次次能够达到的最大值,然后背包合并所有的结果即可. # ...
- BZOJ 1296: [SCOI2009]粉刷匠 分组DP
1296: [SCOI2009]粉刷匠 Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上 ...
随机推荐
- win10 UWP 动画
原文:win10 UWP 动画 本文告诉大家如何写同一个简单的动画. 动画入门 本文开始写一个简单的动画,只是移动矩形作为本文的例子. 在 UWP 移动元素的动画,可以使用 RenderTransfo ...
- 【概率论】4-1:随机变量的期望(The Expectation of a Random Variable Part II)
title: [概率论]4-1:随机变量的期望(The Expectation of a Random Variable Part II) categories: - Mathematic - Pro ...
- re,xpath,BeautifulSoup三种方法爬取古诗词网上诗歌
re,xpath ,bs4对同一个页面的解析速度发现re比xpath快接近10倍,xpath比bs4快接近10倍可见要想追求极致速度,使用正则表达式解析有多重要 1.re解析的代码 # 使用正则表达式 ...
- 微信小程序之简单记账本开发记录(四)
昨天搭建了大致界面 今天需要将用到的一系列样式表配置出来并检查错误
- jenkins之docker安装
此方法安装还存在两个问题1.构建node程序:2.时区问题(在docker run 设置环境变量是否能解决没有试过) 不建议用此方法安装,查看我的其他安装方式 搬运官网步骤,稍微改动. 1.安装doc ...
- Nginx中配置非英文域名
前两天遇到个配置越南语的域名的情况.域名和ip解析完成后,直接ping域名也不通,还以为是解析问题.研究了半天,nginx配置非英文域名时,需要有其他操作. 非英文域名转换成punycode编码才可以 ...
- Maven:禁止编码指定类型的资源文件
[参考文章]:项目编译后dll文件调用出错 maven 在编译或项目时,可能会对资源文件进二次编码(编译前后的文件大小对比即可发现该问题),有些文件(例如:文本文件)可能不会影响我们是用,但是有些文件 ...
- Sublime Markdown预览插件安装流程
使用方法 在sublime中已编辑好的markdown使用快捷键 Alt+M 即可在浏览器预览效果. 需要安装的插件 Markdown Editting:主要用来做 Markdown 编辑时的语法高亮 ...
- Linux中查看系统资源占用情况的命令
用 'top -i' 看看有多少进程处于 Running 状态,可能系统存在内存或 I/O 瓶颈,用 free 看看系统内存使用情况,swap 是否被占用很多,用 iostat 看看 I/O 负载情况 ...
- IOS项目集成ShareSDK实现第三方登录、分享、关注等功能
(1)官方下载ShareSDK iOS 2.8.8,地址:http://sharesdk.cn/ (2)根据实际情况,引入相关的库,参考官方文档. (3)在项目的AppDelegate中一般情况下有三 ...