状态:

dp[i][j][k][0/1]:

  1. 到达第i行时,

  2. 到达第j列时,

  3. 刷到第k次时,

  4. 这一格有没有刷对

转移

  1. 换一块木板时肯定要多刷一次
dp[i][j][k][0]=max(dp[i-1][m][k-1][0],dp[i-1][m][k-1][1]);
dp[i][j][k][1]=max(dp[i-1][m][k-1][0],dp[i-1][m][k-1][1])+1;
  1. 当前格子与上一个格子颜色相同时
/*
,最优的方式是把前一个的1状态原封不动转移,这时的0状态也跟着原封不动(贪心)
*/
dp[i][j][k][1]=dp[i][j-1][k][1]+1;//继续刷下去
dp[i][j][k][0]=dp[i][j-1][k][0];//贪心,原封不动转移
  1. 当前格子与上一个格子颜色不相同时
/*
[1]有两个选择: 一个是牺牲一次k换种颜色刷,另一个是继续上一格的颜色
[0]也要贪心,因为这一格跟上一个不一样,所以如果要继续刷错,可能是从上一次[1]原封不动过来,可能是再用一刷使得刷错.
*/
dp[i][j][k][1]=max(dp[i][j-1][k-1][1],dp[i][j-1][k][0])+1;
dp[i][j][k][0]=max(dp[i][j-1][k][1],dp[i][j-1][k-1][0]);

代码:

#include<bits/stdc++.h>
using namespace std;
int n,m,t;
char p[55][55];
int dp[55][55][2501][2];
inline int read()
{
int tot=0;
char c=getchar();
while(c<'0'||c>'9')
c=getchar();
while(c>='0'&&c<='9')
{
tot=tot*10+c-'0';
c=getchar();
}
return tot;
}
int main()
{
n=read();m=read();t=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)cin>>p[i][j];
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
for(int k=1;k<=t;k++)
{
if(j==1)
{
dp[i][j][k][0]=max(dp[i-1][m][k-1][0],dp[i-1][m][k-1][1]);
dp[i][j][k][1]=max(dp[i-1][m][k-1][0],dp[i-1][m][k-1][1])+1;
continue;
}
if(p[i][j]==p[i][j-1])
{
dp[i][j][k][1]=dp[i][j-1][k][1]+1;
dp[i][j][k][0]=dp[i][j-1][k][0];
}
else
{
dp[i][j][k][1]=max(dp[i][j-1][k-1][1],dp[i][j-1][k][0])+1;
dp[i][j][k][0]=max(dp[i][j-1][k][1],dp[i][j-1][k-1][0]);
}
}
}
}
cout<<max(dp[n][m][t][1],dp[n][m][t][0])<<endl;
return 0;
}

参考

这篇超棒的题解

洛谷 题解 P4158 【[SCOI2009]粉刷匠】的更多相关文章

  1. Luogu P4158 [SCOI2009]粉刷匠(dp+背包)

    P4158 [SCOI2009]粉刷匠 题意 题目描述 \(windy\)有\(N\)条木板需要被粉刷.每条木板被分为\(M\)个格子. 每个格子要被刷成红色或蓝色. \(windy\)每次粉刷,只能 ...

  2. 【题解】洛谷P4158 [SCOI2009] 粉刷匠(DP)

    次元传送门:洛谷P4158 思路 f[i][j][k][0/1]表示在坐标为(i,j)的格子 已经涂了k次 (0是此格子涂错 1是此格子涂对)涂对的格子数 显然的是 每次换行都要增加一次次数 那么当j ...

  3. P4158 [SCOI2009]粉刷匠(洛谷)

    今天A了个紫(我膨胀了),他看起来像个贪心一样,老师说我写的是dp(dp理解不深的缘故QWQ) 直接放题目描述(我旁边有个家伙让我放链接,我还是说明出处吧(万一出处没有了)我讲的大多数题目都是出自洛谷 ...

  4. 洛谷 P4158 [SCOI2009]粉刷匠 题解

    每日一题 day59 打卡 Analysis 很容易看出是一个dp, dp[i][j[k][0/1]来表示到了(i,j)时,刷了k次,0表示这个没刷,1表示刷了. 于是有转移: 1.换行时一定要重新刷 ...

  5. 洛谷P4158 [SCOI2009]粉刷匠

    传送门 设$dp[i][j][k][0/1]$表示在涂点$(i,j)$,涂了$k$次,当前点的颜色是否对,最多能刷对多少个格子 首先换行的时候肯定得多刷一次 然后是如果和前一个格子颜色相同,那么当前点 ...

  6. P4158[SCOI2009]粉刷匠

    题目描述 windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个格子最多只能被 ...

  7. 背包 DP【洛谷P4158】 [SCOI2009]粉刷匠

    P4158 [SCOI2009]粉刷匠 windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上 ...

  8. 【BZOJ1296】[SCOI2009]粉刷匠(动态规划)

    [BZOJ1296][SCOI2009]粉刷匠(动态规划) 题面 BZOJ 洛谷 题解 一眼题吧. 对于每个串做一次\(dp\),求出这个串刷若干次次能够达到的最大值,然后背包合并所有的结果即可. # ...

  9. BZOJ 1296: [SCOI2009]粉刷匠 分组DP

    1296: [SCOI2009]粉刷匠 Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上 ...

随机推荐

  1. 长脖子鹿放置【洛谷P5030】二分图最大独立集变形题

    题目背景 众周所知,在西洋棋中,我们有城堡.骑士.皇后.主教和长脖子鹿. 题目描述 如图所示,西洋棋的“长脖子鹿”,类似于中国象棋的马,但按照“目”字攻击,且没有中国象棋“别马腿”的规则.(因为长脖子 ...

  2. linux下core dump--转载

    原文链接:https://www.cnblogs.com/Anker/p/6079580.html   1.前言 一直在从事linux下后台开发,经常与core文件打交道.还记得刚开始从事linux下 ...

  3. 错误/异常:org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'sessionFactory' defined in ServletContext resource [/WEB-INF/classes/beans_common.xml]...的解决方法

    1.第一个这种类型的异常 1.1.异常信息:org.springframework.beans.factory.BeanCreationException: Error creating bean w ...

  4. 【概率论】2-1:条件概率(Conditional Probability)

    title: [概率论]2-1:条件概率(Conditional Probability) categories: Mathematic Probability keywords: Condition ...

  5. Linux之文件通信

    /* * 后执行,尝试读取另外一个进程写入文件的内容 */ #include <stdio.h> #include <unistd.h> #include <stdlib ...

  6. 提交项目到Github

    create a new repository on the command line git init git add README.md git commit -m "first com ...

  7. Linux中查看和修改分区的uuid方便挂载使用

    查看硬盘UUID: 两种方法: ls -l /dev/disk/by-uuid blkid /dev/sda1 修改分区UUID: 1.修改分区的UUID Ubuntu 使用 uuid命令 生成新的u ...

  8. 检查Object是否存在某个属性

    1. in 和 hasOwnProperty in会检查对象和它的整条原型链,hasOwnProperty只会检查对象本身,不会检查原型链 let a = {name: 'rick'} let b = ...

  9. Java学习之路(2)

    Java中的标识符及命名规范 一.标识符可以使用字母.下划线.$.数字及其他们的组合命名,不能以数字开始,其他的3中可以起头.关键字和保留字不能作为标识符使用; 二.Java是大小写敏感的,也就是说i ...

  10. 数据库groub by分组后,把多行数据合并成一行数据(Oracle、Postgres)

    关键字 row_number() over (partition by)   例如,下面的数据, 这是按照name分组后,展示property值. 我们想得到这样的值; 第一步:将每一组的proper ...