Comet OJ Contest #15 D. 双十一特惠(困难版)
以 $d(x)$ 表示正整数 $x$ 的十进制表示的数位之和。熟知下列关于 $d(x)$ 的结论:
- $d(x) \equiv x \pmod{9}$。从而对于任意正整数列 $a_1, a_2, \dots, a_n$ 有 $\sum_{i=1}^{n} d(a_i) \equiv d(\sum_{i=1}^{n}a_i) \pmod{9}$。
- 十进制下,在正整数 $a,b$ 相加的过程中,每发生一次进位数位之和减少 $9$。因而有 $d(a + b) = d(a) + d(b) - 9c(a, b)$。$c(a, b)$ 表示十进制下 $a, b$ 相加发生的进位次数。
- 正整数 $x$ 可表为 $\sum_{i =1 }^{n}10^{e_i}$ 且 $n$ 可以取到等差数列 $x, x - 9, x -18, \dots, d(x)$ 中的每一个值。证明:考虑下述过程:从 $x$ 个 1 开始,此时 $n = x$。若 $x\ge 10$ 则可以把 $10$ 个 1 变成 $1$ 个 10,使 $n$ 变为 $x - 9$;不断如此操作直到剩下不足 $10$ 个 1。继续对剩下的 10 进行类似的操作。如此反复操作,直到无法操作。
十进制下 $k$ 个连续的 1 可表为 $\frac{10^{k} - 1}{9}$。
题目所问相当于 $\arg\min_{n} v = \sum_{i=1}^{n} \frac{10^{e_i} - 1}{9}$($e_i \ge 1$) 即 $\arg\min_{n} 9v+n = \sum_{i=1}^{n} 10^{e_i}$。根据上述结论 1 和 3,$n$ 只要满足
- $d(9v+n) \equiv n \pmod{9}$
- $n \ge d(9v+n)$
即可。
因此可以枚举 $n$。下面给出答案的上界。令 $t = 9v$,注意到 $d(t) \equiv 0\pmod{9}$,反复进行下列操作直到 $t$ 变成零:$t \to t+ 1$,$t \to t - 10^{h}$,$h$ 表示 $t$ 的十进制表示的最高位,例如,若 $t = 234$ 则 $h = 2$。注意到每次操作过后 $d(t)\bmod 9$ 不变。因此,每次操作之前必有 $t\ge 10$,因而有 $h\ge 1$。 在 $t \to t+1$ 这一步,$d(t)$ 至多增加 $1$,而 $t \to t-10^h$ 这一步,$d(t)$ 恰好减少 $1$。另外,每 $10$ 次操作之中,必有一次 $t \to t+1$ 使个位发生进位,在这个操作后 $d(t)$ 至少减少 $10$。因此每 $10$ 次操作过后 $d(t)$ 至少减少 $10$,因此答案不超过 $d(9v) + 10$。
注:
- 本文参考了源曲明的题解。
- $d(9v + n) \equiv n \pmod{9}$ 即 $d(n) \equiv n \pmod{9}$。
官方题解:
这个思路比我上面的思路要好得多。下面对官方题解作几个注解:
- 由于 $x > 0$ 且 $9v + x$ 是 $10$ 的倍数,因此可以不用管 $9v$ 的个位,直接往 $9v$ 的十位不断加一。
Comet OJ Contest #15 D. 双十一特惠(困难版)的更多相关文章
- Comet OJ - Contest #15 题解
传送门 \(A\) 咕咕 const int N=1005; int a[N],n,T; int main(){ for(scanf("%d",&T);T;--T){ sc ...
- Comet OJ - Contest #15(B: 当我们同心在一起 )
题目链接 题目描述 平面上有 nn 个坐标相异的点,请问当中有多少组非共线的三个点,这三个点的 外心 也在这 nn 个点之中? 输入描述 第一行有一个正整数 nn 代表平面上的点数. 接下来有 nn ...
- Comet OJ - Contest #2 简要题解
Comet OJ - Contest #2 简要题解 cometoj A 模拟,复杂度是对数级的. code B 易知\(p\in[l,r]\),且最终的利润关于\(p\)的表达式为\(\frac{( ...
- Comet OJ - Contest #2简要题解
Comet OJ - Contest #2简要题解 前言: 我没有小裙子,我太菜了. A 因自过去而至的残响起舞 https://www.cometoj.com/contest/37/problem/ ...
- Comet OJ - Contest #4--前缀和
原题:Comet OJ - Contest #4-B https://www.cometoj.com/contest/39/problem/B?problem_id=1577传送门 一开始就想着暴力打 ...
- Comet OJ - Contest #11 题解&赛后总结
Solution of Comet OJ - Contest #11 A.eon -Problem designed by Starria- 在模 10 意义下,答案变为最大数的最低位(即原数数位的最 ...
- Comet OJ - Contest #8
Comet OJ - Contest #8 传送门 A.杀手皇后 签到. Code #include <bits/stdc++.h> using namespace std; typede ...
- Comet OJ - Contest #13-C2
Comet OJ - Contest #13-C2 C2-佛御石之钵 -不碎的意志-」(困难版) 又是一道并查集.最近做过的并查集的题貌似蛮多的. 思路 首先考虑,每次处理矩形只考虑从0变成1的点.这 ...
- Comet OJ - Contest #13 「火鼠的皮衣 -不焦躁的内心-」
来源:Comet OJ - Contest #13 芝士相关: 复平面在信息学奥赛中的应用[雾 其实是道 sb 题??? 发现原式貌似十分可二项式定理,然后发现确实如此 我们把 \(a^i\) 替换成 ...
随机推荐
- Java进阶知识25 Spring与Hibernate整合到一起
1.概述 1.1.Spring与Hibernate整合关键点 1) Hibernate的SessionFactory对象交给Spring创建. 2) hibernate事务交给spring的声明 ...
- *51nod 1409
https://blog.csdn.net/stay_accept/article/details/81476358 不懂啊 #include <map> #include <que ...
- Codeforces 1272 A-E
Codeforces 1272 A-E A Three Friends 直接枚举所有情况,共\(3\times 3\times 3=27\)种. code #include<bits/stdc+ ...
- 浅谈神经网络中的bias
1.什么是bias? 偏置单元(bias unit),在有些资料里也称为偏置项(bias term)或者截距项(intercept term),它其实就是函数的截距,与线性方程 y=wx+b 中的 b ...
- linux系统rwx(421)、777权限详解
摘要 linux的常见权限,mark一下 常用的linux文件权限如下: 444 r--r--r-- 600 rw------- 644 rw-r--r-- 666 rw-rw-rw- 700 rwx ...
- python网络爬虫(一):网络爬虫的定义
网络爬虫,即Web Spider,是一个很形象的名字. 把互联网比喻成一个蜘蛛网,那么Spider就是在网上爬来爬去的蜘蛛.网络蜘蛛是通过网页的链接地址来寻找网页的. 从网站某一个页面(通常是首页)开 ...
- Java并发指南1:并发基础与Java多线程
本文转载自互联网,侵删 什么是并发 在过去单CPU时代,单任务在一个时间点只能执行单一程序.之后发展到多任务阶段,计算机能在同一时间点并行执行多任务或多进程.虽然并不是真正意义上的“同一时间点”,而是 ...
- Mac 内存清理
1.清理前后的对比 清理前: 清理后: 内存多了20G 2.思路 首先,我先看了很多人的经验贴,按照他们的路子查到最后,并没有找到他们指出的大文件. 很显然,Mac的使用方式不同,其内存分配肯定也会不 ...
- CDH构建大数据平台-配置集群的Kerberos认证安全
CDH构建大数据平台-配置集群的Kerberos认证安全 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 当平台用户使用量少的时候我们可能不会在一集群安全功能的缺失,因为用户少,团 ...
- Android 显示系统:飞思卡尔平台图形界面与GPU硬件加速
图形是Android平台中的一个大主题,包含java/jni图形框架和2d/3d图形引擎(skia.OpenGL-ES.renderscript). 本文档描述了飞思卡尔设备上的一般Android图形 ...