Leetcode题目300.最长上升子序列(动态规划-中等)
题目描述:
给定一个无序的整数数组,找到其中最长上升子序列的长度。
示例: 输入: [10,9,2,5,3,7,101,18]
输出: 4
解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4。
说明: 可能会有多种最长上升子序列的组合,你只需要输出对应的长度即可。
你算法的时间复杂度应该为 O(n2) 。
进阶: 你能将算法的时间复杂度降低到 O(n log n) 吗?
思路分析:(题解来自:https://leetcode-cn.com/u/liweiwei1419/)
动态规划,时间复杂度为 O(N^2);
“动态规划”的两个步骤是思考“状态”以及“状态转移方程”。
有的资料又将“动态规划”分为 3 步:
base case:思考问题规模最小的时候,是什么情况;
update function:自下而上思考这个问题,即上面的“状态转移方程”;
gola:重点强调了输出是什么,很多时候输出并不一定是最后一个状态。
我觉得这种分法更细致一点,“状态”以及“状态转移方程”也没有问题,但是我觉得还要加上一个,思考一下“输出”是什么,即将第 2 种的第 3 步加上去,在下面的分析中,我还会强调这一点。
1、定义状态
首先我们考虑能否将题目的问法定义成状态,即 dp[i] 表示长度为 i 的最长上升子序列的长度,但仔细思考之后,我们发现:由于“子序列”不要求连续,长度为 i - 1 的最长上升子序列,与长度为 i 的“最长上升子序列之间的递推关系并不那么容易得到。
但我们由「力扣」第 3 题:“无重复字符的最长子串”以及「力扣」第 53 题:“最大子序和”这两个问题的经验,再结合题意,可以知道,“上升”的递推关系是:看子序列最后一个数,如果一个新数,比子序列最后一个数还大,那么就可以放在这个子序列的最后,形成一个更长的子序列。反正一个子序列一定会以一个数字结尾,那我就将状态成以 nums[i] 结尾的“最长上升子序列”的长度,这一点是常见的。
dp[i]:表示以第 i 个数字为结尾的“最长上升子序列”的长度。即在 [0, ..., i] 的范围内,选择 以数字 nums[i] 结尾 可以获得的最长上升子序列的长度。注意:以第 i 个数字为结尾,即 要求 nums[i] 必须被选取。
初始化的时候,因为每个元素自己可以认为是一个长度为 1 的子序列,所以可以将 dp 数组的值全部设置为 1。
定义输出:下面要考虑一下输出,由于状态不是题目中的问法,因此不能将最后一个状态作为输出,这里输出是把 dp[0]、dp[1]、……、dp[n - 1] 全部看一遍,取最大值。
2、推导“状态转移方程”
遍历到索引是 i 的数的时候,根据上面“状态”的定义,考虑把 i 之前的所有的数都看一遍,只要当前的数 nums[i] 严格大于之前的某个数,那么 nums[i] 就可以接在这个数后面形成一个更长的上升子序列。因此,dp[i] 就是之前严格小于 nums[i] 的“状态”最大值加 1。
因此,状态转移方程是:
dp[i] = max{1 + dp[j] for j < i if nums[j] < nums[i]}
代码实现:
class Solution {
public static int lengthOfLIS(int[] nums) { int len = nums.length;
int[] dp = new int[len];
Arrays.fill(dp, 1);
//初始化dp数组,每个元素至少都是以它自身为结尾,长度为1的自序列
int maxLen = 0;
//从第二个元素开始
for (int i = 1; i < len; i++) {
//以当前元素为结尾
int curVal = nums[i];
for (int j = 0; j < i; j++) {
//当前元素严格大于之前的任何一个片段,则当前元素都可以加在这个区间后面,形成+1长度的自序列
if (curVal > nums[j]) {
dp[i] = Math.max(dp[i], dp[j] + 1);
}
}
}
for (int element : dp) {
maxLen = Math.max(maxLen, element);
}
return maxLen;
}
}
时间复杂度:O(n^2)
空间复杂度:O(n)
Leetcode题目300.最长上升子序列(动态规划-中等)的更多相关文章
- 【LeetCode】300.最长递增子序列——暴力递归(O(n^3)),动态规划(O(n^2)),动态规划+二分法(O(nlogn))
算法新手,刷力扣遇到这题,搞了半天终于搞懂了,来这记录一下,欢迎大家交流指点. 题目描述: 给你一个整数数组 nums ,找到其中最长严格递增子序列的长度. 子序列是由数组派生而来的序列,删除(或不删 ...
- [LeetCode] 300. 最长上升子序列 ☆☆☆(动态规划 二分)
https://leetcode-cn.com/problems/longest-increasing-subsequence/solution/dong-tai-gui-hua-she-ji-fan ...
- Leetcode题目64.最小路径和(动态规划-中等)
题目描述: 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [ [1,3,1], [1, ...
- Leetcode——300. 最长上升子序列
题目描述:题目链接 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,101], ...
- Java实现 LeetCode 300 最长上升子序列
300. 最长上升子序列 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,10 ...
- 1. 线性DP 300. 最长上升子序列 (LIS)
最经典单串: 300. 最长上升子序列 (LIS) https://leetcode-cn.com/problems/longest-increasing-subsequence/submission ...
- LeetCode 300. 最长上升子序列(Longest Increasing Subsequence)
题目描述 给出一个无序的整形数组,找到最长上升子序列的长度. 例如, 给出 [10, 9, 2, 5, 3, 7, 101, 18], 最长的上升子序列是 [2, 3, 7, 101],因此它的长度是 ...
- LeetCode 300——最长上升子序列
1. 题目 2. 解答 2.1. 动态规划 我们定义状态 state[i] 表示以 nums[i] 为结尾元素的最长上升子序列的长度,那么状态转移方程为: \[state[i] = max(state ...
- leetcode 300最长上升子序列
用递归DFS遍历所有组合肯定积分会超时,原因是有很多重复的操作,可以想象每次回溯后肯定会有重复操作.所以改用动态规划.建立一个vector<int>memo,初始化为1,memo[i]表示 ...
随机推荐
- centos mysql数据库问题:ERROR 1044 (42000): Access denied for user ''@'localhost' to database 'mysql'(转)
问题描述: 安装好数据库MySQL,进入mysql,设置号密码后,退出的时候,利用密码无法进入,直接回车后可进入,无法看到数据库mysql,use mysql返回错误:ERROR 1044 (4200 ...
- nexus 匿名用户的问题。
为了做到安全和不浪费我们自己的服务器资源,要绝对拒绝匿名用户进行访问: 1,不允许匿名用户访问 2,禁用匿名的账号 以下是这2点的设置图. ============================== ...
- 现有项目springmvc 小结
1. 接口接收json数据 @RequestBody JSONObject param 2.返回json数据封装 DataPacket.jsonResult
- Kubernetes 的 Client Libraries 的使用
说明 kubernetes 估计会成为 linux 一样的存在,client-go 是它的 go sdk,client-go/examples/ 给出了一些用例,但是数量比较少. api Resour ...
- httpd源码编译安装
什么是编译安装——编译:将源代码变为机器可执行的代码文件.安装:将可执行文件安装到操作系统里,才可以使用. 一.下载httpd源码包 在官网上下载httpd源码包http://httpd.apache ...
- Cannot debug in IntellijIdea on Linux
OS: Deepin LinuxIDE: Intellij IdeaProject: SpringBoot based maven project Issue: cannot debug in Ide ...
- Ubuntu系统---安装English版本之后的一些工作
Ubuntu系统---安装English版本之后的一些工作 安装完U ...
- 18 Candidates for the Top 10 Algorithms in Data Mining
Classification============== #1. C4.5 Quinlan, J. R. 1993. C4.5: Programs for Machine Learning.Morga ...
- Java字节码常量池深度剖析与字节码整体结构分解
常量池深度剖析: 在上一次[https://www.cnblogs.com/webor2006/p/9416831.html]中已经将常量池分析到了2/3了,接着把剩下的分析完,先回顾一下我们编译的源 ...
- #Python绘制 文本进度条,带刷新、时间暂缓的
#Python绘制 文本进度条,带刷新.时间暂缓的 #文本进度条 import time as T st=T.perf_counter() print('-'*6,'执行开始','-'*6) maxx ...