Leetcode题目300.最长上升子序列(动态规划-中等)
题目描述:
给定一个无序的整数数组,找到其中最长上升子序列的长度。
示例: 输入: [10,9,2,5,3,7,101,18]
输出: 4
解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4。
说明: 可能会有多种最长上升子序列的组合,你只需要输出对应的长度即可。
你算法的时间复杂度应该为 O(n2) 。
进阶: 你能将算法的时间复杂度降低到 O(n log n) 吗?
思路分析:(题解来自:https://leetcode-cn.com/u/liweiwei1419/)
动态规划,时间复杂度为 O(N^2);
“动态规划”的两个步骤是思考“状态”以及“状态转移方程”。
有的资料又将“动态规划”分为 3 步:
base case:思考问题规模最小的时候,是什么情况;
update function:自下而上思考这个问题,即上面的“状态转移方程”;
gola:重点强调了输出是什么,很多时候输出并不一定是最后一个状态。
我觉得这种分法更细致一点,“状态”以及“状态转移方程”也没有问题,但是我觉得还要加上一个,思考一下“输出”是什么,即将第 2 种的第 3 步加上去,在下面的分析中,我还会强调这一点。
1、定义状态
首先我们考虑能否将题目的问法定义成状态,即 dp[i] 表示长度为 i 的最长上升子序列的长度,但仔细思考之后,我们发现:由于“子序列”不要求连续,长度为 i - 1 的最长上升子序列,与长度为 i 的“最长上升子序列之间的递推关系并不那么容易得到。
但我们由「力扣」第 3 题:“无重复字符的最长子串”以及「力扣」第 53 题:“最大子序和”这两个问题的经验,再结合题意,可以知道,“上升”的递推关系是:看子序列最后一个数,如果一个新数,比子序列最后一个数还大,那么就可以放在这个子序列的最后,形成一个更长的子序列。反正一个子序列一定会以一个数字结尾,那我就将状态成以 nums[i] 结尾的“最长上升子序列”的长度,这一点是常见的。
dp[i]:表示以第 i 个数字为结尾的“最长上升子序列”的长度。即在 [0, ..., i] 的范围内,选择 以数字 nums[i] 结尾 可以获得的最长上升子序列的长度。注意:以第 i 个数字为结尾,即 要求 nums[i] 必须被选取。
初始化的时候,因为每个元素自己可以认为是一个长度为 1 的子序列,所以可以将 dp 数组的值全部设置为 1。
定义输出:下面要考虑一下输出,由于状态不是题目中的问法,因此不能将最后一个状态作为输出,这里输出是把 dp[0]、dp[1]、……、dp[n - 1] 全部看一遍,取最大值。
2、推导“状态转移方程”
遍历到索引是 i 的数的时候,根据上面“状态”的定义,考虑把 i 之前的所有的数都看一遍,只要当前的数 nums[i] 严格大于之前的某个数,那么 nums[i] 就可以接在这个数后面形成一个更长的上升子序列。因此,dp[i] 就是之前严格小于 nums[i] 的“状态”最大值加 1。
因此,状态转移方程是:
dp[i] = max{1 + dp[j] for j < i if nums[j] < nums[i]}
代码实现:
class Solution {
public static int lengthOfLIS(int[] nums) { int len = nums.length;
int[] dp = new int[len];
Arrays.fill(dp, 1);
//初始化dp数组,每个元素至少都是以它自身为结尾,长度为1的自序列
int maxLen = 0;
//从第二个元素开始
for (int i = 1; i < len; i++) {
//以当前元素为结尾
int curVal = nums[i];
for (int j = 0; j < i; j++) {
//当前元素严格大于之前的任何一个片段,则当前元素都可以加在这个区间后面,形成+1长度的自序列
if (curVal > nums[j]) {
dp[i] = Math.max(dp[i], dp[j] + 1);
}
}
}
for (int element : dp) {
maxLen = Math.max(maxLen, element);
}
return maxLen;
}
}
时间复杂度:O(n^2)
空间复杂度:O(n)
Leetcode题目300.最长上升子序列(动态规划-中等)的更多相关文章
- 【LeetCode】300.最长递增子序列——暴力递归(O(n^3)),动态规划(O(n^2)),动态规划+二分法(O(nlogn))
算法新手,刷力扣遇到这题,搞了半天终于搞懂了,来这记录一下,欢迎大家交流指点. 题目描述: 给你一个整数数组 nums ,找到其中最长严格递增子序列的长度. 子序列是由数组派生而来的序列,删除(或不删 ...
- [LeetCode] 300. 最长上升子序列 ☆☆☆(动态规划 二分)
https://leetcode-cn.com/problems/longest-increasing-subsequence/solution/dong-tai-gui-hua-she-ji-fan ...
- Leetcode题目64.最小路径和(动态规划-中等)
题目描述: 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [ [1,3,1], [1, ...
- Leetcode——300. 最长上升子序列
题目描述:题目链接 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,101], ...
- Java实现 LeetCode 300 最长上升子序列
300. 最长上升子序列 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,10 ...
- 1. 线性DP 300. 最长上升子序列 (LIS)
最经典单串: 300. 最长上升子序列 (LIS) https://leetcode-cn.com/problems/longest-increasing-subsequence/submission ...
- LeetCode 300. 最长上升子序列(Longest Increasing Subsequence)
题目描述 给出一个无序的整形数组,找到最长上升子序列的长度. 例如, 给出 [10, 9, 2, 5, 3, 7, 101, 18], 最长的上升子序列是 [2, 3, 7, 101],因此它的长度是 ...
- LeetCode 300——最长上升子序列
1. 题目 2. 解答 2.1. 动态规划 我们定义状态 state[i] 表示以 nums[i] 为结尾元素的最长上升子序列的长度,那么状态转移方程为: \[state[i] = max(state ...
- leetcode 300最长上升子序列
用递归DFS遍历所有组合肯定积分会超时,原因是有很多重复的操作,可以想象每次回溯后肯定会有重复操作.所以改用动态规划.建立一个vector<int>memo,初始化为1,memo[i]表示 ...
随机推荐
- Ajax的学习
AJAX的学习 AJAX的简介 AJAX即“Asynchronous Javascript And XML”(异步JavaScript和XML),是指一种创建交互式网页应用的网页开发技术. AJAX ...
- Layui 实现input 输入和选择
<div class="layui-col-md4"> <label class="layui-form-label">移交单位< ...
- html 输入框ios苹果手机显示九宫格数字键盘
只需要在input标签加上type=‘tel’ 即可
- tr 命令详细介绍
tr用来从标准输入中对字符进行操作,主要用于删除文件中指定字符.字符转换.压缩文件字符. 我们可以用:tr --help查看一下系统详细介绍 [root@bqh-118 scripts]# tr -- ...
- java入门学习总结_04
1.循环结构 2.方法 循环结构 概述 1.对于某些需要重复执行的,相同或者相似的语句,使用某种格式来完成对代码的简化. 2.实现的语句: for语句[常用] while语句[常用] do...whi ...
- Computer Vision_33_SIFT:Evaluation of Interest Point Detectors——2000
此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...
- Java基于Redis的分布式锁
分布式锁,其实最终还是要保证锁(数据)的一致性,说到数据一致性,基于ZK,ETCD数据一致性中间件做分数是锁,才是王道.但是Redis也能满足最基本的需求. 参考: https://www.cnblo ...
- WIN10安装.net报0x800F081F解决方法
WIN10安装.net2.0和.net3.0报错,错误代码:0x800F081F,解决方法: 方法一:检查服务windows update有无开启,若未开启,开启服务后,再装.net 注:若安装.ne ...
- Java&Selenium数据驱动【DataProvider+TestNG+Array】
Java&Selenium数据驱动[DataProvider+TestNG+Array] package testNGWithDataDriven; import java.util.conc ...
- Java基础 继承的方式创建多线程 / 线程模拟模拟火车站开启三个窗口售票
继承的方式创建多线程 笔记: /**继承的方式创建多线程 * 线程的创建方法: * 1.创建一个继承于Thread 的子类 * 2.重写Thread类的run()方法 ,方法内实现此子线程 要完成的功 ...