[CF544D]Destroying Roads_最短路_bfs
D. Destroying Roads
题目大意:
In some country there are exactly n cities and m bidirectional roads connecting the cities. Cities are numbered with integers from 1 to n. If cities a and b are connected by a road, then in an hour you can go along this road either from city a to city b, or from city b to city a. The road network is such that from any city you can get to any other one by moving along the roads.
You want to destroy the largest possible number of roads in the country so that the remaining roads would allow you to get from city s1 to city t1 in at most l1 hours and get from city s2 to city t2 in at most l2 hours.
Determine what maximum number of roads you need to destroy in order to meet the condition of your plan. If it is impossible to reach the desired result, print -1.
数据范围:
The first line contains two integers n, m (1 ≤ n ≤ 3000, ) — the number of cities and roads in the country, respectively.
Next m lines contain the descriptions of the roads as pairs of integers ai, bi (1 ≤ ai, bi ≤ n, ai ≠ bi). It is guaranteed that the roads that are given in the description can transport you from any city to any other one. It is guaranteed that each pair of cities has at most one road between them.
The last two lines contains three integers each, s1, t1, l1 and s2, t2, l2, respectively (1 ≤ si, ti ≤ n, 0 ≤ li ≤ n).
题解:
首先,保证了删掉的边最多,那就说明$s1$到$t1$和$s2$到$t2$都分别只有一条路径,不然的话我们还可以删掉更多的边。
接下来我们考虑,最终答案的形式。
必定是如下三种情况之一:
第一种,这两条路径互不相交。就是$s1$到$t1$,$s2$到$t2$。
第二种,存在一条公共路径,$l$到$r$,答案是$s1$到$l$,$l$到$r$,$r$到$t1$;和$s2$到$l$,$l$到$r$,$r$到$t2$。
最后一种是$s2$和$t2$调换,也就是$t2$到$l$,$l$到$r$,$r$到$s2$。
显然,每段路径都是最短路。
我们需要枚举$l$和$r$,也就是说我们需要多源最短路。
但是已知的算法最快也只能做到$n^2logn$,跑$n$遍堆优化$Dijkstra$。
好慢啊.....
诶,我们发现每条边的边权都相等,所以我们可以直接$bfs$。
因为边权都相等,所以每个点第一次到的时间戳就是距离。
然后枚举更新答案就好,不要忘记了第一种情况和判断是否超出了长度上限$l1$和$l2$。
代码:
#include <bits/stdc++.h> #define N 3010 using namespace std; int head[N], to[N << 1], nxt[N << 1], tot; int dis[N][N]; bool vis[N]; queue<int > q; char *p1, *p2, buf[100000]; #define nc() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000,stdin), p1 == p2) ? EOF : *p1 ++ ) int rd() {
int x = 0, f = 1;
char c = nc();
while (c < 48) {
if (c == '-')
f = -1;
c = nc();
}
while (c > 47) {
x = (((x << 2) + x) << 1) + (c ^ 48), c = nc();
}
return x * f;
} inline void add(int x, int y) {
to[ ++ tot] = y;
nxt[tot] = head[x];
head[x] = tot;
} void bfs(int x) {
while (!q.empty())
q.pop();
memset(dis[x], 0x3f, sizeof dis[x]);
memset(vis, false, sizeof vis);
vis[x] = true;
dis[x][x] = 0;
q.push(x);
while (!q.empty()) {
int p = q.front(); q.pop();
for (int i = head[p]; i; i = nxt[i]) {
if (!vis[to[i]]) {
dis[x][to[i]] = dis[x][p] + 1;
vis[to[i]] = true;
q.push(to[i]);
}
}
}
} int main() {
int n = rd(), m = rd();
for (int i = 1; i <= m; i ++ ) {
int x = rd(), y = rd();
add(x, y), add(y, x);
}
int s1 = rd(), t1 = rd(), l1 = rd();
int s2 = rd(), t2 = rd(), l2 = rd();
for (int i = 1; i <= n; i ++ ) {
bfs(i);
}
if(dis[s1][t1] > l1 || dis[s2][t2] > l2)
puts("-1"), exit(0);
int ans = dis[s1][t1] + dis[s2][t2];
for (int i = 1; i <= n ; i ++ ) {
for (int j = 1; j <= n; j ++ ) {
int v1, v2;
v1 = dis[s1][i] + dis[i][j] + dis[j][t1];
v2 = dis[s2][i] + dis[i][j] + dis[j][t2];
if(v1 <= l1 && v2 <= l2)
ans = min(ans, v1 + v2 - dis[i][j]);
v2 = dis[s2][j] + dis[j][i] + dis[i][t2];
if(v1 <= l1 && v2 <= l2)
ans = min(ans, v1 + v2 - dis[i][j]);
}
}
printf("%d\n", m - ans);
return 0;
}
小结:好题啊。对于一个没有思路的题,我们可以想一想最终答案的样子。如果有没有用上的条件,看看能不能通过那个条件来优化当前的不完美算法。
[CF544D]Destroying Roads_最短路_bfs的更多相关文章
- CF Destroying Roads (最短路)
Destroying Roads time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...
- Codeforces Round #302 (Div. 2) D. Destroying Roads 最短路
题目链接: 题目 D. Destroying Roads time limit per test 2 seconds memory limit per test 256 megabytes input ...
- Codeforces 543B Destroying Roads(最短路)
题意: 给定一个n个点(n<=3000)所有边长为1的图,求最多可以删掉多少条边后,图满足s1到t1的距离小于l1,s2到t2的距离小于l2. Solution: 首先可以分两种情况讨论: 1: ...
- Codeforces Round #302 (Div. 2) D. Destroying Roads 最短路 删边
题目:有n个城镇,m条边权为1的双向边让你破坏最多的道路,使得从s1到t1,从s2到t2的距离分别不超过d1和d2. #include <iostream> #include <cs ...
- Codeforces Round #302 (Div. 2) D - Destroying Roads 图论,最短路
D - Destroying Roads Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/544 ...
- POJ 3921 Destroying the bus stations 沿着最短路迭代加深搜索
题目:给出一个图,问最少删除多少个点,使得从点1到点n经过的点数超过k个. 分析: 上网搜了一下,发现很多人用网络流做的,发现我不会.再后来看到这篇说网络流的做法是错的,囧. 后来发现点数有点少,直接 ...
- codeforces 544 D Destroying Roads 【最短路】
题意:给出n个点,m条边权为1的无向边,破坏最多的道路,使得从s1到t1,s2到t2的距离不超过d1,d2 因为最后s1,t1是连通的,且要破坏掉最多的道路,那么就是求s1到t1之间的最短路 用bfs ...
- 图论--网络流--最小割 HDU 2485 Destroying the bus stations(最短路+限流建图)
Problem Description Gabiluso is one of the greatest spies in his country. Now he's trying to complet ...
- Codeforces 543.B Destroying Roads
B. Destroying Roads time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
随机推荐
- python--批量修改文件夹名
python代码如下: import os , re import os.path rootdir = r'C:\Users\Administrator\Desktop\222' # rootdir ...
- Linux 文件查看
链接:https://www.nowcoder.com/questionTerminal/fb39fbeec71f43a3a16edeb0bc98f4ac 来源:牛客网 /var/log/messag ...
- hdu 4998 Rotate 点的旋转 银牌题
Rotate Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Subm ...
- 【转载】全网最!详!细!tarjan算法讲解。
转自http://www.cnblogs.com/uncle-lu/p/5876729.html [转载]全网最!详!细!tarjan算法讲解.(已改正一些奥妙重重的小错误^_^) 全网最详细tarj ...
- 【线性代数】2-2:消元(Eliminate)
title: [线性代数]2-2:消元(Eliminate) toc: true categories: Mathematic Linear Algebra date: 2017-08-31 16:1 ...
- 在Idea中 的terminal 使用 git
参考该博客内容 http://blog.csdn.net/qq_28867949/article/details/73012300
- 第一次尝试学习java 安装jdk 与配置环境变量 写第一个java程序 并运行
第一次学习java,今天知道了java之父叫 詹姆斯.高司令 其它的记不住太多,首先我们先来安装jdk 百度搜索jdk12 (现在的jdk为12版本)安装稳定版 找到javaSE12X.. 下 ...
- FatMouse's Speed
J - FatMouse's Speed DP的题写得多了慢慢也有了思路,虽然也还只是很简单的DP. 因为需要输出所有选择的老鼠,所以刚开始的时候想利用状态压缩来储存所选择的老鼠,后面才发现n太大1& ...
- OVS报错:s1.mgmt: version negotiation failed (we support version 0x01, peer supports version 0x04) ovs-ofctl: s1: failed to connect to socket (Broken pipe)
mininet搭建拓扑后,查看流表,发现ovs命令报错 查找原因发现系mininet创建拓扑的命令使用了OpenFlow 1.3版本 ovs dump-flows命令默认是1.0版本,因此需要在ovs ...
- Remote Ubuntu VM from Windows
Need to install the xrdp tool on Ubuntu. To do this, open a Terminal window (Ctrl + Alt + T) and ent ...