D. Destroying Roads

题目大意

In some country there are exactly n cities and m bidirectional roads connecting the cities. Cities are numbered with integers from 1 to n. If cities a and b are connected by a road, then in an hour you can go along this road either from city a to city b, or from city b to city a. The road network is such that from any city you can get to any other one by moving along the roads.

You want to destroy the largest possible number of roads in the country so that the remaining roads would allow you to get from city s1 to city t1 in at most l1 hours and get from city s2 to city t2 in at most l2 hours.

Determine what maximum number of roads you need to destroy in order to meet the condition of your plan. If it is impossible to reach the desired result, print -1.

数据范围

The first line contains two integers n, m (1 ≤ n ≤ 3000, ) — the number of cities and roads in the country, respectively.

Next m lines contain the descriptions of the roads as pairs of integers ai, bi (1 ≤ ai, bi ≤ n, ai ≠ bi). It is guaranteed that the roads that are given in the description can transport you from any city to any other one. It is guaranteed that each pair of cities has at most one road between them.

The last two lines contains three integers each, s1, t1, l1 and s2, t2, l2, respectively (1 ≤ si, ti ≤ n, 0 ≤ li ≤ n).


题解

首先,保证了删掉的边最多,那就说明$s1$到$t1$和$s2$到$t2$都分别只有一条路径,不然的话我们还可以删掉更多的边。

接下来我们考虑,最终答案的形式。

必定是如下三种情况之一:

第一种,这两条路径互不相交。就是$s1$到$t1$,$s2$到$t2$。

第二种,存在一条公共路径,$l$到$r$,答案是$s1$到$l$,$l$到$r$,$r$到$t1$;和$s2$到$l$,$l$到$r$,$r$到$t2$。

最后一种是$s2$和$t2$调换,也就是$t2$到$l$,$l$到$r$,$r$到$s2$。

显然,每段路径都是最短路。

我们需要枚举$l$和$r$,也就是说我们需要多源最短路。

但是已知的算法最快也只能做到$n^2logn$,跑$n$遍堆优化$Dijkstra$。

好慢啊.....

诶,我们发现每条边的边权都相等,所以我们可以直接$bfs$。

因为边权都相等,所以每个点第一次到的时间戳就是距离。

然后枚举更新答案就好,不要忘记了第一种情况和判断是否超出了长度上限$l1$和$l2$。

代码

#include <bits/stdc++.h>

#define N 3010 

using namespace std;

int head[N], to[N << 1], nxt[N << 1], tot;

int dis[N][N];

bool vis[N];

queue<int > q;

char *p1, *p2, buf[100000];

#define nc() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000,stdin), p1 == p2) ? EOF : *p1 ++ )

int rd() {
int x = 0, f = 1;
char c = nc();
while (c < 48) {
if (c == '-')
f = -1;
c = nc();
}
while (c > 47) {
x = (((x << 2) + x) << 1) + (c ^ 48), c = nc();
}
return x * f;
} inline void add(int x, int y) {
to[ ++ tot] = y;
nxt[tot] = head[x];
head[x] = tot;
} void bfs(int x) {
while (!q.empty())
q.pop();
memset(dis[x], 0x3f, sizeof dis[x]);
memset(vis, false, sizeof vis);
vis[x] = true;
dis[x][x] = 0;
q.push(x);
while (!q.empty()) {
int p = q.front(); q.pop();
for (int i = head[p]; i; i = nxt[i]) {
if (!vis[to[i]]) {
dis[x][to[i]] = dis[x][p] + 1;
vis[to[i]] = true;
q.push(to[i]);
}
}
}
} int main() {
int n = rd(), m = rd();
for (int i = 1; i <= m; i ++ ) {
int x = rd(), y = rd();
add(x, y), add(y, x);
}
int s1 = rd(), t1 = rd(), l1 = rd();
int s2 = rd(), t2 = rd(), l2 = rd();
for (int i = 1; i <= n; i ++ ) {
bfs(i);
}
if(dis[s1][t1] > l1 || dis[s2][t2] > l2)
puts("-1"), exit(0);
int ans = dis[s1][t1] + dis[s2][t2];
for (int i = 1; i <= n ; i ++ ) {
for (int j = 1; j <= n; j ++ ) {
int v1, v2;
v1 = dis[s1][i] + dis[i][j] + dis[j][t1];
v2 = dis[s2][i] + dis[i][j] + dis[j][t2];
if(v1 <= l1 && v2 <= l2)
ans = min(ans, v1 + v2 - dis[i][j]);
v2 = dis[s2][j] + dis[j][i] + dis[i][t2];
if(v1 <= l1 && v2 <= l2)
ans = min(ans, v1 + v2 - dis[i][j]);
}
}
printf("%d\n", m - ans);
return 0;
}

小结:好题啊。对于一个没有思路的题,我们可以想一想最终答案的样子。如果有没有用上的条件,看看能不能通过那个条件来优化当前的不完美算法。

[CF544D]Destroying Roads_最短路_bfs的更多相关文章

  1. CF Destroying Roads (最短路)

    Destroying Roads time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  2. Codeforces Round #302 (Div. 2) D. Destroying Roads 最短路

    题目链接: 题目 D. Destroying Roads time limit per test 2 seconds memory limit per test 256 megabytes input ...

  3. Codeforces 543B Destroying Roads(最短路)

    题意: 给定一个n个点(n<=3000)所有边长为1的图,求最多可以删掉多少条边后,图满足s1到t1的距离小于l1,s2到t2的距离小于l2. Solution: 首先可以分两种情况讨论: 1: ...

  4. Codeforces Round #302 (Div. 2) D. Destroying Roads 最短路 删边

    题目:有n个城镇,m条边权为1的双向边让你破坏最多的道路,使得从s1到t1,从s2到t2的距离分别不超过d1和d2. #include <iostream> #include <cs ...

  5. Codeforces Round #302 (Div. 2) D - Destroying Roads 图论,最短路

    D - Destroying Roads Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/544 ...

  6. POJ 3921 Destroying the bus stations 沿着最短路迭代加深搜索

    题目:给出一个图,问最少删除多少个点,使得从点1到点n经过的点数超过k个. 分析: 上网搜了一下,发现很多人用网络流做的,发现我不会.再后来看到这篇说网络流的做法是错的,囧. 后来发现点数有点少,直接 ...

  7. codeforces 544 D Destroying Roads 【最短路】

    题意:给出n个点,m条边权为1的无向边,破坏最多的道路,使得从s1到t1,s2到t2的距离不超过d1,d2 因为最后s1,t1是连通的,且要破坏掉最多的道路,那么就是求s1到t1之间的最短路 用bfs ...

  8. 图论--网络流--最小割 HDU 2485 Destroying the bus stations(最短路+限流建图)

    Problem Description Gabiluso is one of the greatest spies in his country. Now he's trying to complet ...

  9. Codeforces 543.B Destroying Roads

    B. Destroying Roads time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

随机推荐

  1. centos6.5linux安装docker之升级内核

    一.运行docker Linux内核版本需要在3.8以上,针对centos6.5 内核为2.6的系统需要先升级内核.不然会特别卡 在yum的ELRepo源中,有mainline(4.5).long-t ...

  2. Linux创建删除文件和文件夹

    要想删除和创建,需要有root权限 [xwg@bogon ~]$ su root密码:[root@bogon xwg]# cd /home/a      切换到目录a[root@bogon a]# t ...

  3. LIUNX 安装 nginx

    安装依赖 yum install gcc yum install pcre-devel yum install zlib zlib-devel yum install openssl openssl- ...

  4. .net 数据导出

    安装npoi,下面是具体的C#代码: public static XSSFWorkbook BuildWorkbook(DataTable dt) { var book = new XSSFWorkb ...

  5. VMware Workstation 与 Device/Credential Guard 不兼容

    之前在本机搭建Docker for Windows的时候,启用了win10自带的虚拟Hyper-V,但是win10的虚拟与VMware Workstation的虚拟有冲突,运行VMware Works ...

  6. LeetCode 32. 最长有效括号(Longest Valid Parentheses)

    题目描述 给定一个只包含 '(' 和 ')' 的字符串,找出最长的包含有效括号的子串的长度. 示例 1: 输入: "(()" 输出: 2 解释: 最长有效括号子串为 "( ...

  7. echarts中国地图3D各个城市标点demo

    <!DOCTYPE html><html><head>    <meta charset="UTF-8">    <meta ...

  8. 使用pyinstaller 打包python程序

    1.打开PyCharm的Terminal,使用命令pip install pyinstaller安装pyinstaller 2.打包命令:pyinstaller --console --onefile ...

  9. linux如何将某个用户加入到其它组?

    答: 在Ubuntu下可以使用以下命令添加: sudo usermod -a -G <group_name> <user_name> 注意: 如何生效呢?   需要重新登陆系统 ...

  10. Scrapy教程——搭建环境、创建项目、爬取内容、保存文件

    1.创建项目 在开始爬取之前,您必须创建一个新的Scrapy项目.进入您打算存储代码的目录中,运行新建命令. 例如,我需要在D:\00Coding\Python\scrapy目录下存放该项目,打开命令 ...