一 、GIL全局解释器

GIL是一个互斥锁:保证数据的安全(以牺牲效率来换取数据的安全)
阻止同一个进程内多个线程同时执行(不能并行但是能够实现并发)
并发:看起来像同时进行的
GIL全局解释器存在的原因是因为Cpython解释器的内存管理不是线程安全的

垃圾回收机制

1.引用计数
2.标记清除
3.分代回收

同一个进程下的多个线程不能实现并行但是能够实现并发,多个进程下的线程能够实现并行

问题:python多线程是不是就没有用了呢?
四个任务:计算密集的任务 每个任务耗时10s
单核情况下:
多线程好一点,消耗的资源少一点
多核情况下:
开四个进程:10s多一点
开四个线程:40s多一点

四个任务:IO密集的任务 每个任务io 10s
单核情况下:
多线程好一点
多核情况下:
多线程好一点
多线程和多进程都有自己的优点,要根据项目需求合理选择

# 计算密集型
from multiprocessing import Process
from threading import Thread
import os,time
def work():
res=
for i in range():
res*=i if __name__ == '__main__':
l=[]
print(os.cpu_count())   # 本机为4核
start=time.time()
for i in range():
# p=Process(target=work)   #耗时13.
p=Thread(target=work)   #耗时25.
l.append(p)
p.start()
for p in l:
p.join()
stop=time.time()
print('run time is %s' %(stop-start))

# IO密集型

from multiprocessing import Process
from threading import Thread
import threading
import os,time def work():
time.sleep() if __name__ == '__main__':
l=[]
print(os.cpu_count())   #本机为4核
start=time.time()
for i in range():
p=Process(target=work)   #耗时4.
# p=Thread(target=work)   #耗时2.
l.append(p)
p.start()
for p in l:
p.join()
stop=time.time()
print('run time is %s' %(stop-start))

二 、 GIL与普通锁对比

代码

from threading import Thread,Lock
import time mutex = Lock() n = 100 def task():
global n
mutex.acquire()
tmp = n
time.sleep(0.1)
n = tmp - 1
mutex.release() t_list = []
for i in range(100):
t = Thread(target=task)
t.start()
t_list.append(t) for t in t_list:
t.join() print(n) -->> 0

对于不同的数据,要想保证安全,需要加不同的锁处理
GIL并不能保证数据的安全,它是对Cpython解释器加锁,针对的是线程
保证的是同一个进程下多个线程之间的安全

三 、死锁与递归锁(了解)

代码演示

from threading import Thread,Lock,RLock
import time """
自定义锁一次acquire必须对应一次release,不能连续acquire
递归锁可以连续的acquire,每acquire一次计数加一:针对的是第一个抢到我的人
""" #
# mutexA = Lock()
# mutexB = Lock()
mutexA = mutexB = RLock() # 抢锁之后会有一个计数 抢一次计数加一 针对的是第一个抢到我的人 class MyThread(Thread):
def run(self):
self.func1()
self.func2() def func1(self):
mutexA.acquire()
print('%s 抢到A锁了'%self.name)
mutexB.acquire()
print('%s 抢到B锁了' % self.name)
mutexB.release()
print('%s 释放了B锁'%self.name)
mutexA.release()
print('%s 释放了A锁'%self.name) def func2(self):
mutexB.acquire()
print('%s 抢到了B锁'%self.name)
time.sleep(1)
mutexA.acquire()
print('%s 抢到A锁了' % self.name)
mutexA.release()
print('%s 释放了A锁' % self.name)
mutexB.release()
print('%s 释放了B锁' % self.name) for i in range(100):
t = MyThread()
t.start()

四 、 信号量(了解)

代码演示

from threading import Thread,Semaphore
import time
import random
sm = Semaphore(5) # 五个厕所五把锁
# 跟你普通的互斥锁区别在于,普通的互斥锁是独立卫生间,所有人抢一把锁
# 信号量 公共卫生间 有多个坑,所有人抢多把锁 def task(name):
sm.acquire()
print('%s正在蹲坑'%name)
# 模拟蹲坑耗时
time.sleep(random.randint(1,5))
sm.release() if __name__ == '__main__':
for i in range(20):
t = Thread(target=task,args=('伞兵%s号'%i,))
t.start()

五 、 event事件(了解)

例子:

from threading import Event,Thread
import time
import random event = Event() def light():
print('红灯亮着!')
time.sleep(3)
event.set()    # 解除阻塞,给我的event发了一个信号
print('绿灯亮了!') def car(i):
print('%s 正在等红灯了'%i)
event.wait()    # 阻塞
print('%s 加油门飙车了'%i) t1 = Thread(target=light)
t1.start() for i in range(10):
t = Thread(target=car,args=(i,))
t.start()

六 、线程Queue(了解)

import queue

# 1.普通q
# 2.先进后出q
# 3.优先级q # q=queue.Queue(3)
# q.put(1)
# q.put(2)
# q.put(3)
# print(q.get())
# print(q.get())
# print(q.get()) # q = queue.LifoQueue(5)
# q.put(1)
# q.put(2)
# q.put(3)
# q.put(4)
# print(q.get()) # 优先级q
# q = queue.PriorityQueue()
# q.put((10,'a'))
# q.put((-1,'b'))
# q.put((100,'c'))
# print(q.get())
# print(q.get())
# print(q.get())

GIL与线程进程小知识点的更多相关文章

  1. GIL锁、进程池与线程池

    1.什么是GIL? 官方解释: ''' In CPython, the global interpreter lock, or GIL, is a mutex that prevents multip ...

  2. CIL锁,GIL与线程池的区别,进程池和线程池,同步与异步

    一.GIL锁 什么是GIL? 全局解释器锁,是加在解释器上的互斥锁 GC是python自带的内存管理机制,GC的工作原理:python中的内存管理使用的是应用计数,每个数会被加上一个整型的计数器,表示 ...

  3. GIL锁和进程/线程池

    GIL锁 1.GIL锁 全局解释器锁,就是一个把互斥锁,将并发变成串行,同一时刻只能有一个线程使用共享资源,牺牲效率,保证数据安全,也让程序员避免自己一个个加锁,减轻开发负担 带来的问题 感觉单核处理 ...

  4. 文成小盆友python-num11-(1) 线程 进程 协程

    本节主要内容 线程补充 进程 协程 一.线程补充 1.两种使用方法 这里主要涉及两种使用方法,一种为直接使用,一种为定义自己的类然后继承使用如下: 直接使用如下: import threading d ...

  5. 13 并发编程-(线程)-异步调用与回调机制&进程池线程池小练习

    #提交任务的两种方式 #1.同步调用:提交完任务后,就在原地等待任务执行完毕,拿到结果,再执行下一行代码,导致程序是串行执行 一.提交任务的两种方式 1.同步调用:提交任务后,就在原地等待任务完毕,拿 ...

  6. GIL 线程/进程池 同步异步

    GIL 什么是GIL 全局解释器锁,本质是一把互斥锁,是加在cpython解释器上的一把锁, 同一个进程内的所有线程需要先抢到GIL锁,才能执行python代码 为什么要有GIL cpython解释器 ...

  7. python之线程进程协成

    线程与进程 什么是线程 线程是进程一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位,线程自己基本上不拥有系统资源,只拥有一点在运行中必不可少的资源,但是它可与同属一个线程的 ...

  8. Python之线程&进程

    线程: 线程是操作系统能够进行运算调度的最小单位.它被包含在进程之中,是进程中的实际运作单位.一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务. thr ...

  9. python_21_线程+进程+协程

    python_线程_进程_协程 什么是线程? -- os能够进行运算调度的最小单位,被包含在进程之中,是一串指令的集合 -- 每个线程都是独立的,可以访问同一进程下所有的资源 什么是进程? -- 每个 ...

随机推荐

  1. JS实现动态添加和删除div

    实现方式一:只在最后一个数据中动态添加或者删除 | 背景需要做一个页面,页面可以输入参数,点击确认按钮可以发请求给某接口.但是接口的某个字段是数组类型,所以在页面上需要实现添加或者删除元素的功能. | ...

  2. Qt编写气体安全管理系统23-类型设置

    一.前言 类型设置这个功能模块大大拓展了整个系统的灵活性,将整个系统中所有用到的控制器型号.探测器数量.探测器型号.气体种类.气体符号都存储到数据库表中,用户在类型设置中可以自由添加删除和修改,这样后 ...

  3. jvm 虚拟机字节码指令表(转)

        

  4. H5微信场景应用 audio模块

    css .bgAudio{width:27px;height:27px;position:fixed;right:10px;top:10px;z-index:999;-webkit-tap-highl ...

  5. 【嵌入式硬件Esp32】Ubuntu 1804下ESP32交叉编译环境搭建

    一.ESP32概述EPS32是乐鑫最新推出的集成2.4GWi-Fi和蓝牙双模的单芯片方案,采用台积电(TSMC)超低功耗的40nm工艺,拥有最佳的功耗性能.射频性能.稳定性.通用性和可靠性,适用于多种 ...

  6. Flutter中的日期插件date_format 中文 国际化 及flutter_cupertino_date_picker

    今天我们来聊聊Flutter中的日期和日期选择器. Flutter中的日期和时间戳 //日期时间戳转换 var _nowTime = DateTime.now();//获取当前时间 print(_no ...

  7. Raspberry Pi 3B I2C 问题

    刚刚接触树莓派,的确很适合用来学习,资料多而且很规范,开发者多,平台统一,很多问题别人都已经解决.

  8. 【计算机视觉】行为识别(action recognition)相关资料

    ================华丽分割线=================这部分来自知乎==================== 链接:http://www.zhihu.com/question/3 ...

  9. samtools获取uniq reads

    参考地址: https://www.biostars.org/p/56246/ -q INT only include reads with mapping quality >= INT [0] ...

  10. [CF1051F]The Shortest Statement_堆优化dij_最短路树_倍增lca

    The Shortest Statement 题目链接:https://codeforces.com/contest/1051/problem/F 数据范围:略. 题解: 关于这个题,有一个重要的性质 ...