题目描述

给定一个由前\(n\)个小写字母组成的串\(S\)。

串\(S\)是阶乘字符串当且仅当前\(n\)个小写字母的全排列(共\(n!\)种)都作为\(S\)的子序列(可以不连续)出现。

由这个定义出发,可以得到一个简单的枚举法去验证,但是它实在太慢了。所以现在请你设计一个算法,在\(1\)秒内判断出给定的串是否是阶乘字符串。

输入格式

输入第\(1\)行一个整数\(T\),表示这个文件中会有\(T\)组数据。

接下来分\(T\)个块,每块\(2\)行:

第\(1\)行一个正整数\(n\),表示\(S\)由前\(n\)个小写字母组成。

第\(2\)行一个字符串\(S\)。

输出格式

对于每组数据,分别输出一行。每行是\(YES\)或者\(NO\),表示该数据对应的串\(S\)是否是阶乘字符串。

样例输入

2
2
bbaa
2
aba

样例输出

NO
YES

【样例解释】

第一组数据中,ab这个串没有作为子序列出现。

数据范围

\[N \leq 26 \\\\
T \leq 5 \\\\
|S| \leq 450 \\\\
\]

解题报告

题意理解

这道题目,有一点点绕? 可能是我太菜了

我们初步读题可知,题目要求我们判断一个字符串.

给你一个\(N\),如果说一个字符串满足\(N\)的全排列字符串

而且这些字符串,都以序列的形式出现在这个字符串,那么我们称之为合法,否则不合法.

算法解析

这道题目运用的是.状态压缩DP.

首先我们思考一下,这道题目\(N \leq 26\),这个数据范围似乎不太好状态压缩?

数据太大了....

但是我们发现,其实\(N \ge 21\),完全可以判断无解.

这是为什么,有证明吗?

当\(n \ge 21\)的时候

假设\(|S| = 450\)

在|S|中任意取21个数字

$ C(450, 21) < 21!$

说明这\(450\)个字符不能完全凑成\(n!\)个序列。


接下来我们着重分析一下,状态压缩思想.

我们知道状态压缩其实就是 集合二进制枚举 处理.

那么既然如此,我们不妨设置一下 状态表示.

  1. 状态是一个 集合
  2. 题目要求 全排列合法
  3. 一般题目中,总会有 最后一位,也就是转移过来的元素

设\(f[S]\)表示当\(S\)中集合中的字母构成的排列均在原序列\([1,f[S]]\)出现的最小值。

既然如此的话.

我们不妨预处理一下.

\(g[i][j]\)表示从\(i\)开始下一个字母\(j\)出现的位置。

总而言之,我们就是利用 刷表法则,一步步推导状态.

因此我们不妨设置核心程序.

for(int S=1; S<(1<<n); S++)//枚举子集
{
int cnt=0;
for(int i=0; i<n; i++)
if(S & (1<<i) ) //s集合拥有这一位,其实也就是i结尾
cnt=max(cnt,g[f [S^(1<<i) ]][i] );//排除这一位,然后转移过来
f[S]=cnt;//更新
}

代码解析

#include <bits/stdc++.h>
using namespace std;
const int N=460;
#define read(x) scanf("%d",&x)
int t,n,m,g[N][32],f[1<<21];
char s[N];
inline void init()
{
read(t);
while(t--)
{
read(n);
scanf("%s",s+1);//默认读入从1开始
m=strlen(s+1);
if (n>21)//特殊判定无解情况
{
puts("NO");
continue;
}
for(int i=m+1; i>=0; i--)//从i开始下一个j出现的位置
{
for(int j=0; j<n; j++)
g[i][j]=( i>=m ? m+1 : g[i+1][j] ); //前面的位置,最近的是当前这位的
if(i!=m)
g[i][ s[i+1]-'a' ]=i;//当前位为最近的
}
for(int S=1; S<(1<<n); S++)//枚举子集
{
int cnt=0;
for(int i=0; i<n; i++)
if(S & (1<<i) ) //s集合拥有这一位,其实也就是i结尾
cnt=max(cnt,g[f [S^(1<<i) ]][i] );//排除这一位,然后转移过来
f[S]=cnt;//更新
}
printf("%s\n",f[ (1<<n)-1 ] <=m ? "YES":"NO" );//是否存在
}
}
int main()
{
init();
return 0;
}

[SHOI2013]阶乘字符串的更多相关文章

  1. 洛谷 P3989 [SHOI2013]阶乘字符串 解题报告

    P3989 [SHOI2013]阶乘字符串 题目描述 给定一个由前\(n(\le 26)\)个小写字母组成的串\(S(|S|\le 450)\).串\(S\)是阶乘字符串当且仅当前 \(n\) 个小写 ...

  2. BZOJ4416: [Shoi2013]阶乘字符串

    可以大胆猜想n>21时无解,至于依据,不开O2,1s,n<=21刚好能卡过去= = 并不会证= = #include<cstdio> void up(int& a,in ...

  3. BZOJ4416 [Shoi2013]阶乘字符串 【序列自动机 + 状压dp】

    题目链接 BZOJ4416 题解 建立序列自动机,即预处理数组\(nxt[i][j]\)表示\(i\)位置之后下一个\(j\)出现的位置 设\(f[i]\)表示合法字符集合为\(i\)的最短前缀,枚举 ...

  4. [BZOJ4416][SHOI2013]阶乘字符串(子集DP)

    怎么也没想到是子集DP,想到了应该就没什么难度了. 首先n>21时必定为NO. g[i][j]表示位置i后的第一个字母j在哪个位置,n*21求出. f[S]表示S的所有全排列子序列出现的最后末尾 ...

  5. BZOJ4416 SHOI2013阶乘字符串(状压dp)

    当n大到一定程度(>21)时一定无解,并不会证. 如果要取出一个排列,显然应该让每一位在序列中的位置尽量靠前.于是设f[S]表示存在S子集中这些字母所组成的所有排列的最短前缀的长度,枚举当前排列 ...

  6. BZOJ 4416 【SHOI2013】 阶乘字符串

    题目链接:阶乘字符串 又是一道不会做的题……看了题解后我被吓傻了…… 首先我们可以有一个显然的\(O(2^nn)\)的做法.我们先预处理出\(g_{i,j}\)表示字符串中\(i\)号位置开始第一个\ ...

  7. 【JZOJ3293】【BZOJ4416】【luoguP3989】阶乘字符串

    description 给定一个由前n个小写字母组成的串S. 串S是阶乘字符串当且仅当前n个小写字母的全排列(共n!种)都作为S的子序列(可以不连续)出现. 由这个定义出发,可以得到一个简单的枚举法去 ...

  8. [JZOJ3293] 【SHTSC2013】阶乘字符串

    题目 题目大意 给你一个字符串,判断这个字符串是否为"阶乘字符串". 就是子序列包含字符集的全排列的字符串. n≤26n\leq 26n≤26 ∣S∣≤450|S|\leq 450 ...

  9. [暑假的bzoj刷水记录]

    (这篇我就不信有网站来扣) 这个暑假打算刷刷题啥的 但是写博客好累啊  堆一起算了 隔一段更新一下.  7月27号之前刷的的就不写了 , 写的累 代码不贴了,可以找我要啊.. 2017.8.27upd ...

随机推荐

  1. TensorFlow.训练_资料(有视频)

    ZC:自己训练 的文章 貌似 能度娘出来很多,得 自己弄过才知道哪些个是坑 哪些个好用...(在CSDN文章的右侧 也有列出很多相关的文章链接)(貌似 度娘的关键字是"TensorFlow ...

  2. JavaScript 检测值

    了解常见的真值和假值,可以增强判断能力.在使用if判断时,提升编码速度. 了解常见的检测和存在,一样可以增强判断能力,而且是必须掌握的. 数组和对象被视为真值 1 2 3 4 5 6 7 8 9 10 ...

  3. ML.NET 1

    ML.NET 示例:目录 ML.NET 示例中文版:https://github.com/feiyun0112/machinelearning-samples.zh-cn英文原版请访问:https:/ ...

  4. 转换函数conversion function

    类转换分为两个角度 转换自身为其他类型 把其他类型转换为自身 Example: 这里我们可以将b转换为class xxx 的类型(方式2),也可以将me转换为double,然后再讲结果转换为doubl ...

  5. 线上Storm的worker,executor,task参数调优篇

    问题引入: 线上最近的数据量越来越大,出现了数据处理延迟的现象,观察storm ui的各项数据,发现有大量的spout失败的情况,如下: ------------------------------- ...

  6. CentOS7编译安装libc++和libc++abi

    本文介绍了如何在CentOS 7中构建C++11构建环境 Clang的定制C++库是libc++(libcxx).然后,libcxx还需要一个ABI库,libc++abi(libcxxabi).不幸的 ...

  7. 粒子群优化算法(PSO)的基本概念

    介绍了PSO基本概念,以及和遗传算法的区别: 粒子群算法(PSO)Matlab实现(两种解法)

  8. Python+request超时和重试

    Python+request超时和重试 一.什么是超时? 1.连接超时 连接超时指的是没连接上,超过指定的时间内都没有连接上,这就是连接超时.(连接时间就是httpclient发送请求的地方开始到连接 ...

  9. Linux基础 目录

    一,linux入门介绍 二,界面目录介绍 三,vim使用 四,文件管理. 文件夹管理. 五.用户创建流程.用户管理 .组管理 六.权限管理.软连接/硬链接 七.磁盘管理 八.软件包的管理 九.系统服务 ...

  10. 剑指offer1: 组类型——二维数组中的查找(给定一个数字,查找是否在该数组中)

    1. 思路: 缩小范围 2. 方法: (1)要查找的数字等于数组中的数字,结束查找过程: (2)要查找的数字小于数组中的数字,去除该数字右边的数字,在剩下的数字里查找: (3)要查找的数字大于数组中的 ...