Geometry Problem

HDU - 6242

Alice is interesting in computation geometry problem recently. She found a interesting problem and solved it easily. Now she will give this problem to you :

You are given NN distinct points (Xi,Yi)(Xi,Yi) on the two-dimensional plane. Your task is to find a point PP and a real number RR, such that for at least ⌈N2⌉⌈N2⌉ given points, their distance to point PP is equal to RR.

Input

The first line is the number of test cases.

For each test case, the first line contains one positive number N(1≤N≤105)N(1≤N≤105).

The following NN lines describe the points. Each line contains two real numbers XiXiand YiYi (0≤|Xi|,|Yi|≤103)(0≤|Xi|,|Yi|≤103) indicating one give point. It's guaranteed that NN points are distinct.

Output

For each test case, output a single line with three real numbers XP,YP,RXP,YP,R, where (XP,YP)(XP,YP) is the coordinate of required point PP. Three real numbers you output should satisfy 0≤|XP|,|YP|,R≤1090≤|XP|,|YP|,R≤109.

It is guaranteed that there exists at least one solution satisfying all conditions. And if there are different solutions, print any one of them. The judge will regard two point's distance as RR if it is within an absolute error of 10−310−3 of RR.

Sample Input

1
7
1 1
1 0
1 -1
0 1
-1 1
0 -1
-1 0

Sample Output

0 0 1

题意:

给n个互补相同的二维坐标点,保证可以找到一个点\(p(x,y)\),满足存在\(ceil(n/2)\) 个点和这个点p的距离相同。

思路:

当n=1时,p可以为任意一点

当\(2<=n<=4\) 时,取任意两点的中点即可,

当n>=5 时,

我们随机3个互补相同的点,并找到以这3个点确定的圆的圆心以及半径R,然后计算有多少个点和这个圆心的距离为R,如果个数*2>=n,就说明该圆心就是要找的点,半径就是距离。

为什么这样可以?

因为保证一定存在解,那么一定有至少\(ceil(n/2)\) 个点在同一个圆上,那么找到3个点都在这个圆上的概率大概就是\((1/2)^3\) 那么期望大概就是8次就可以确定出圆心。

ac代码

#include<bits/stdc++.h>
#include<ctime>
using namespace std;
typedef long long ll;
typedef double ld;
const ld eps = 1e-6; int sgn(ld x)
{
if(fabs(x)<eps)
return 0;
if(x<0)
return -1;
else
{
return 1;
}
}
struct point
{
ld x,y;
point(){}
point(ld _x,ld _y)
{
x=_x;
y=_y;
}
point operator - (const point &b) const
{
return point(x-b.x,y-b.y);
}
ld operator ^ (const point &b) const
{
return x*b.y-y*b.x;
}
ld operator * (const point &b) const
{
return x*b.x+y*b.y;
} };
point getpoint(point a,point b,point c,point d)
{
point res;
ld a1,b1,c1,a2,b2,c2;
a1=a.y-b.y,b1=b.x-a.x,c1=a.x*b.y-b.x*a.y;
a2=c.y-d.y,b2=d.x-c.x,c2=c.x*d.y-d.x*c.y;
res.x=(b1*c2-b2*c1)/(a1*b2-a2*b1);
res.y=-(a1*c2-a2*c1)/(a1*b2-a2*b1);
return res;
}
struct line
{
point s,e;
line(){}
line(point _s,point _e)
{
s=_s;
e=_e;
}
pair<int,point> operator & (const line &b)const
{
point res=s;
if(sgn((s-e)^(b.s-b.e))==0)
{
if(sgn((s-b.e)^(b.s-b.e))==0)
{
return make_pair(0,res);
}else{
return make_pair(1,res);
}
}
res = getpoint(s,e,b.s,b.e);
return make_pair(2,res);
}
}; int t;
int n;
point a[100010];
ld R;
line l1,l2;
ld base=2e9;
line getline_(point aa,point bb)
{
ld xc=bb.x-aa.x;
ld yc=bb.y-aa.y;
if(sgn(yc)==0)
{
return line(point(bb.x,base),point(bb.x,-base));
}else
{
ld k=-1*xc/yc;
point mid=point((aa.x+bb.x)*0.5,(aa.y+bb.y)*0.5);
return line(point(mid.x+base,mid.y+base*k),point(mid.x-base,mid.y-base*k));
}
}
ld getdis(point aa,point bb)
{
return sqrt((aa.x-bb.x)*(aa.x-bb.x)+(aa.y-bb.y)*(aa.y-bb.y));
}
point c;
bool check(point aa,point bb,point cc)
{
l1=getline_(aa,bb);
l2=getline_(bb,cc);
pair<int,point> res=l1&l2;
if(res.first!=2)
{
return 0;
}else if(res.first==2)
{
c=res.second;
R=getdis(c,aa);
int cnt=0;
for(int i=1;i<=n;++i)
{
if(sgn(fabs(getdis(c,a[i]))-R)==0)
{
// cout<<getdis(c,a[i])<<endl;
cnt++;
}
}
// cout<<" cnt "<<" "<<cnt<<endl;
return cnt*2>=n;
}
}
//#define mp make_pair
//
//map<pair<int,pair<int,int> >,bool > vis;
int main()
{
// ios::sync_with_stdio(false);
// cin>>t;
int x,y;
scanf("%d",&t);
while(t--)
{
// vis.clear();
std::mt19937 rnd(time(NULL));
// cin>>n;
scanf("%d",&n);
for(int i=1;i<=n;++i)
{
scanf("%lf %lf",&a[i].x,&a[i].y);
// cin>>a[i].x>>a[i].y;
}
if(n==1)
{
c.x=0;
c.y=0;
R=getdis(c,a[1]);
}else if(n<=4)
{
c=point((a[1].x+a[2].x)*0.5,(a[1].y+a[2].y)*0.5);
R=getdis(c,a[1]);
}else
{
while(1)
{
int id1,id2,id3;
id1=rnd()%n+1;
do
{
id2=rnd()%n+1;
}while(id2==id1);
do
{
id3=rnd()%n+1;
}while(id3==id1||id3==id2);
// cout<<id1<<" "<<id2<<" "<<id3<<endl;
if(check(a[id1],a[id2],a[id3]))
{
break;
}
}
}
printf("%.5f %.5f %.5f\n",c.x+eps,c.y+eps,R);
// cout<<fixed<<setprecision(5)<<c.x+eps<<" "<<c.y+eps<<" "<<R<<endl;
}
return 0;
}

HDU - 6242 Geometry Problem (几何,思维,随机)的更多相关文章

  1. hdu 6242 Geometry Problem

    Geometry Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Other ...

  2. HDU 6242 Geometry Problem(计算几何 + 随机化)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6242 思路:当 n == 1 时 任取一点 p 作为圆心即可. n >= 2 && ...

  3. hdu 5605 geometry(几何,数学)

    Problem Description There is a point P at coordinate (x,y). A line goes through the point, and inter ...

  4. HDU - 6242:Geometry Problem(随机+几何)

    Alice is interesting in computation geometry problem recently. She found a interesting problem and s ...

  5. hdu 1086 You can Solve a Geometry Problem too (几何)

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  6. You can Solve a Geometry Problem too (hdu1086)几何,判断两线段相交

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/3276 ...

  7. hdu 1086 You can Solve a Geometry Problem too

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  8. (hdu step 7.1.2)You can Solve a Geometry Problem too(乞讨n条线段,相交两者之间的段数)

    称号: You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/ ...

  9. HDU 1086:You can Solve a Geometry Problem too

    pid=1086">You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Mem ...

随机推荐

  1. Andrew Ng机器学习课程17(2)

    Andrew Ng机器学习课程17(2) 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ 说明:主要介绍了利用value iteration和policy i ...

  2. [转载]ftp和http区别

    本文围绕以下三个部分展开: 一.HTTP协议 二.FTP协议 三.HTTP与FTP的异同点 一.HTTP协议简介 1. 概念 HTTP: HyperText Transfer Protocal,超文本 ...

  3. IIC挂死问题解决过程

    0.环境:arm CPU 带有IIC控制器作为slave端,带有调试串口. 1.bug表现:IIC slave 在系统启动后概率挂死,导致master无法detect到slave. 猜测1:认为IIC ...

  4. Jmeter进行接口流程测试

    Jmeter进行简单的流程测试 此次完成的流程:添加文章-删除文章 总的如下: 一.测试计划 用户定义的变量中,我定义了3个变量: 二.HTTP cookie管理器 填写要添加的cookie 三.JD ...

  5. 内网环境下搭建maven私服小技巧

    背景 最近接手一个其他公司的项目,因为工程中使用了maven,而且里面有很多他们自己封装很多自己的构件(就是jar.war等等),需要将他们maven私服迁移到我们的私服上去,因为网络环境不通,所以不 ...

  6. time() 函数时间不同步问题

    1.时区设置问题 处理方法:编辑php.ini  搜索 “timezone” 改写为 PRC 时区 2.服务器时间不同步 处理方法:设置服务器时间和本地时间进行同步

  7. go struct 的方法1

    方法 Go 没有类.然而,仍然可以在结构体类型上定义方法. 方法接收者 出现在 func 关键字和方法名之间的参数中. package main import (     "fmt" ...

  8. go 数组的定义和赋值

    package main import "fmt" func main() {     //字符数组定义     var str [2]string     str[0] = &q ...

  9. RHadoop: REDUCE capability required is more than the supported max container capability in the cluster

    I have not used RHadoop. However I've had a very similar problem on my cluster, and this problem see ...

  10. Scratch第四十九讲:完美的下落和反弹

    做了很多小游戏,都会遇到碰撞和反弹的情况,CC哥大多时候也都是简单处理一下,包括之前的讲座也有提过,但是没有认真的讲解过.今天就专门为这个主题做一讲,把这部分内容彻底讲透,大家可以一起探讨一下. 是不 ...