Chinese Rings (九连环+矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842
题目:
The first ring can be taken off or taken on with one step.
If the first k rings are all off and the (k + 1)th ring is on, then the (k + 2)th ring can be taken off or taken on with one step. (0 ≤ k ≤ 7)
Now consider a game with N (N ≤ 1,000,000,000) rings on a bar, Dumbear wants to make all the rings off the bar with least steps. But Dumbear is very dumb, so he wants you to help him.
4
0
10
a[0][0] = 1, a[0][1] = 1, a[0][2] = 0;
a[1][0] = 2, a[1][1] = 0, a[1][2] = 0;
a[2][0] = 1, a[2][1] = 0, a[2][2] = 1。
#include <cstdio>
#include <cstring> typedef long long ll;
const int mod = ;
int n;
int f[], a[][]; void mul(int f[], int a[][]) {
int c[];
memset(c, , sizeof(c));
for(int i = ; i < ; i++) {
for(int j = ; j < ; j++) {
c[i] = (c[i] + (ll) f[j] * a[j][i]) % mod;
}
}
memcpy(f, c, sizeof(c));
} void mulself(int a[][]) {
int c[][];
memset(c, , sizeof(c));
for(int i = ; i < ; i++) {
for(int j = ; j < ; j++) {
for(int k = ; k < ; k++) {
c[i][j] = (c[i][j] + (ll) a[i][k] * a[k][j]) % mod;
}
}
}
memcpy(a, c, sizeof(c));
} int main() {
while(~scanf("%d", &n) && n) {
if(n == ) {
printf("1\n");
continue;
}
if(n == ) {
printf("2\n");
continue;
}
f[] = , f[] = , f[] = ;
a[][] = , a[][] = , a[][] = ;
a[][] = , a[][] = , a[][] = ;
a[][] = , a[][] = , a[][] = ;
n = n - ;
for(; n; n >>= ) {
if(n & ) mul(f, a);
mulself(a);
}
printf("%d\n", f[] % mod);
}
return ;
}
Chinese Rings (九连环+矩阵快速幂)的更多相关文章
- HDU 2842 Chinese Rings( 递推关系式 + 矩阵快速幂 )
链接:传送门 题意:解 N 连环最少步数 % 200907 思路:对于 N 连环来说,解 N 连环首先得先解 N-2 连环然后接着解第 N 个环,然后再将前面 N-2 个环放到棍子上,然后 N 连环问 ...
- hdu 2842 Chinese Rings 矩阵快速幂
分析: 后面的环能不能取下来与前面的环有关,前面的环不被后面的环所影响.所以先取最后面的环 设状态F(n)表示n个环全部取下来的最少步数 先取第n个环,就得使1~n-2个环属于被取下来的状态,第n-1 ...
- jiulianhuan 快速幂--矩阵快速幂
题目信息: 1471: Jiulianhuan 时间限制: 1 Sec 内存限制: 128 MB 提交: 95 解决: 22 题目描述 For each data set in the input ...
- 矩阵快速幂在ACM中的应用
矩阵快速幂在ACM中的应用 16计算机2黄睿博 首发于个人博客http://www.cnblogs.com/BobHuang/ 作为一个acmer,矩阵在这个算法竞赛中还是蛮多的,一个优秀的算法可以影 ...
- HDU 5318——The Goddess Of The Moon——————【矩阵快速幂】
The Goddess Of The Moon Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/ ...
- BNU29139——PvZ once again——————【矩阵快速幂】
PvZ once again Time Limit: 2000ms Memory Limit: 65536KB 64-bit integer IO format: %lld Java cla ...
- 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)
题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...
- 51nod 算法马拉松18 B 非010串 矩阵快速幂
非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模) ...
- 51nod 1113 矩阵快速幂
题目链接:51nod 1113 矩阵快速幂 模板题,学习下. #include<cstdio> #include<cmath> #include<cstring> ...
随机推荐
- LintCode-159.寻找旋转排序数组中的最小值
寻找旋转排序数组中的最小值 假设一个旋转排序的数组其起始位置是未知的(比如0 1 2 4 5 6 7 可能变成是4 5 6 7 0 1 2). 你需要找到其中最小的元素. 你可以假设数组中不存在重复的 ...
- Debian 7 amd64--TP-LINK TL-WN725N 2.0源码驱动编译安装
租房用的是无线网络,在新安装的Debian 7 amd64使用的无线网卡型号是TP-LINK TL-WN725N 2.0,发现驱动安装还是有些问题,折腾了很久,特意在此记录一下. TL-WN725N ...
- 原生js移动端可拖动进度条插件
该插件最初的想法来自网上的一篇文章,直达链接:https://www.cnblogs.com/libin-1/p/6220056.html 笔者因为业务需要寻找到这个插件,然后拿来用之,发现各种不方便 ...
- hdu 1879 继续畅通工程 (最小生成树)
继续畅通工程 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Subm ...
- vscode Variables Reference
vscode Variables Reference 您可以在以下链接中找到该列表:https://code.visualstudio.com/docs/editor/variables-refere ...
- [洛谷P5105]不强制在线的动态快速排序
题目大意:有一个可重集$S$,有两个操作: $1\;l\;r:$表示把$S$变为$S\cup[l,r]$ $2:$表示将$S$从小到大排序,记为$a_1,a_2,\dots,a_n$,然后求出$\bi ...
- [洛谷P4248][AHOI2013]差异
题目大意:给一个长度为$n$的字符串,求: $$\sum\limits_{1\leqslant i<j\leqslant n}|suf_i|+|suf_j|-2\times lcp(suf_i, ...
- 项目管理---git----快速使用git笔记(三)------coding.net注册和新建项目(远程仓库)
我们在第一章已经了解了github和coding.net的区别: github是一个基于git的代码托管平台,付费用户可以建私人仓库,我们一般的免费用户只能使用公共仓库,也就是代码要公开. codin ...
- SRM13 T3 花六游鸟小(结论题)
哇这题是真的喵,HR智商太高辣 这题的难点就是看了题解之后怎么证明题解里的结论... 结论①:深度大于logm的点肯定能达到最大值 证明:显然一个西瓜的属性里0数量一半1数量一半我们取到的1数量最少, ...
- apache出现You don't have permission to access / on this server. 提示
今天在新的linux上跑原来的代码,使用的虚拟主机的模式进行操作.几个相关的网站放在一个文件里,想法是通过网站列出的目录进行相应的网站进行操作.一切设置完成后,在浏览器中运行出现在You don't ...