题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842

题目:

Problem Description
Dumbear likes to play the Chinese Rings (Baguenaudier). It’s a game played with nine rings on a bar. The rules of this game are very simple: At first, the nine rings are all on the bar.
The first ring can be taken off or taken on with one step.
If the first k rings are all off and the (k + 1)th ring is on, then the (k + 2)th ring can be taken off or taken on with one step. (0 ≤ k ≤ 7)

Now consider a game with N (N ≤ 1,000,000,000) rings on a bar, Dumbear wants to make all the rings off the bar with least steps. But Dumbear is very dumb, so he wants you to help him.

 
Input
Each line of the input file contains a number N indicates the number of the rings on the bar. The last line of the input file contains a number "0".
 
Output
For each line, output an integer S indicates the least steps. For the integers may be very large, output S mod 200907.
 
Sample Input
1
4
0
 
Sample Output
1
10
 
题意:给你个n连环(就是平时玩的九连环类的益智玩具,还不知道的就请自行百度一下啦……),问最少要操作多少次才能把所有的环取下来~
思路:个人认为这是要靠经验来,没玩过的可能不知道该怎样取才能把所有的环都取下来。第n项与前几项的关系是f(n)=f(n-1)+2*f(n-2) + 1,解释一下这个递推公式就是你要取下第n个的话得先把1~n-2都取下来(第一个f(n-2)),第n-1个挂在上面,然后把第n个取下来(递推公式中1的由来),然后再把1~n-2全部挂上去(第二个f(n-2)),然后就是把第n-1取下去(f(n-1))。因为就可以构造出矩阵了,f[0] = 2, f[1] = 1, f[2] = 1;
        a[0][0] = 1, a[0][1] = 1, a[0][2] = 0;
        a[1][0] = 2, a[1][1] = 0, a[1][2] = 0;
        a[2][0] = 1, a[2][1] = 0, a[2][2] = 1。
 
代码实现如下:
 #include <cstdio>
#include <cstring> typedef long long ll;
const int mod = ;
int n;
int f[], a[][]; void mul(int f[], int a[][]) {
int c[];
memset(c, , sizeof(c));
for(int i = ; i < ; i++) {
for(int j = ; j < ; j++) {
c[i] = (c[i] + (ll) f[j] * a[j][i]) % mod;
}
}
memcpy(f, c, sizeof(c));
} void mulself(int a[][]) {
int c[][];
memset(c, , sizeof(c));
for(int i = ; i < ; i++) {
for(int j = ; j < ; j++) {
for(int k = ; k < ; k++) {
c[i][j] = (c[i][j] + (ll) a[i][k] * a[k][j]) % mod;
}
}
}
memcpy(a, c, sizeof(c));
} int main() {
while(~scanf("%d", &n) && n) {
if(n == ) {
printf("1\n");
continue;
}
if(n == ) {
printf("2\n");
continue;
}
f[] = , f[] = , f[] = ;
a[][] = , a[][] = , a[][] = ;
a[][] = , a[][] = , a[][] = ;
a[][] = , a[][] = , a[][] = ;
n = n - ;
for(; n; n >>= ) {
if(n & ) mul(f, a);
mulself(a);
}
printf("%d\n", f[] % mod);
}
return ;
}

Chinese Rings (九连环+矩阵快速幂)的更多相关文章

  1. HDU 2842 Chinese Rings( 递推关系式 + 矩阵快速幂 )

    链接:传送门 题意:解 N 连环最少步数 % 200907 思路:对于 N 连环来说,解 N 连环首先得先解 N-2 连环然后接着解第 N 个环,然后再将前面 N-2 个环放到棍子上,然后 N 连环问 ...

  2. hdu 2842 Chinese Rings 矩阵快速幂

    分析: 后面的环能不能取下来与前面的环有关,前面的环不被后面的环所影响.所以先取最后面的环 设状态F(n)表示n个环全部取下来的最少步数 先取第n个环,就得使1~n-2个环属于被取下来的状态,第n-1 ...

  3. jiulianhuan 快速幂--矩阵快速幂

    题目信息: 1471: Jiulianhuan 时间限制: 1 Sec  内存限制: 128 MB 提交: 95  解决: 22 题目描述 For each data set in the input ...

  4. 矩阵快速幂在ACM中的应用

    矩阵快速幂在ACM中的应用 16计算机2黄睿博 首发于个人博客http://www.cnblogs.com/BobHuang/ 作为一个acmer,矩阵在这个算法竞赛中还是蛮多的,一个优秀的算法可以影 ...

  5. HDU 5318——The Goddess Of The Moon——————【矩阵快速幂】

    The Goddess Of The Moon Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/ ...

  6. BNU29139——PvZ once again——————【矩阵快速幂】

    PvZ once again Time Limit: 2000ms Memory Limit: 65536KB 64-bit integer IO format: %lld      Java cla ...

  7. 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)

    题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...

  8. 51nod 算法马拉松18 B 非010串 矩阵快速幂

    非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模) ...

  9. 51nod 1113 矩阵快速幂

    题目链接:51nod 1113 矩阵快速幂 模板题,学习下. #include<cstdio> #include<cmath> #include<cstring> ...

随机推荐

  1. IIS安装出现“安装程序无法复制文件CONVLOG.EX_”的解决办法

    重新安装了一次IIS,结果就在重新安装的时候,出现安装程序无法复制文件CONVLOG.EX_,上网找了找资料,是因为secedit.sdb 数据库的问题,既然是因为这个文件的问题,那么我们就可以使用w ...

  2. do_group_exit函数

    一个进程在sleep状态如何获取进程的调用栈 TASK_WAKEUPKILL状态 一个进程sleep了,我如何获取他的用户态栈,如何获取用户堆栈 如何在内核态打印用户态+内核态的栈? 确定上一个调用栈 ...

  3. codesandbox

    codesandbox https://codesandbox.io https://codesandbox.io/dashboard https://codesandbox.io/dashboard ...

  4. DELPHI dbgrid 选中的是第几行 怎么判断?

    使用DataSource.DataSet.RecNo可以得到dbgrid选中的是第几行,示例代码如下: procedure TForm1.btn1Click(Sender: TObject); beg ...

  5. java 中 Stringbuff append源代码浅析

    public synchronized StringBuffer append(String str) {        super.append(str);        return this;  ...

  6. 【bzoj3427】Poi2013 Bytecomputer dp

    题目描述 A sequence of N  integers I1,I2…In from the set {-1,0,1} is given. The bytecomputer is a device ...

  7. Windows7上安装Git

    我首先是百度到了这个网站:https://git-scm.com/download/win 这个网站上有下载链接,你可以根据你的系统选择不同的下载链接,我的是Win7 x64位的,下载地址为: htt ...

  8. BZOJ4709 JSOI2011柠檬(动态规划)

    首先要冷静下来发现这仅仅是在划分区间.显然若有相邻的数字相同应当划分在同一区间.还有一个显然的性质是区间的两端点应该相同且选择的就是端点的数.瞬间暴力dp就变成常数极小100002了.可以继续斜率优化 ...

  9. [SP8372-TSUM]Triple Sums

    题面在这里 description 某\(B\)姓\(OJ\)权限题 给出\(n\)个正整数\(a[i]\),求\(i<j<k\)且\(S=a[i]+a[j]+a[k]\)的三元组\((i ...

  10. BZOJ1297:[SCOI2009]迷路——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=1297 windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 ...