hdu 3081(二分+并查集+最大流||二分图匹配)
Marriage Match II
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3558 Accepted Submission(s): 1158
you all have known the question of stable marriage match. A girl will
choose a boy; it is similar as the game of playing house we used to play
when we are kids. What a happy time as so many friends playing
together. And it is normal that a fight or a quarrel breaks out, but we
will still play together after that, because we are kids.
Now, there
are 2n kids, n boys numbered from 1 to n, and n girls numbered from 1
to n. you know, ladies first. So, every girl can choose a boy first,
with whom she has not quarreled, to make up a family. Besides, the girl X
can also choose boy Z to be her boyfriend when her friend, girl Y has
not quarreled with him. Furthermore, the friendship is mutual, which
means a and c are friends provided that a and b are friends and b and c
are friend.
Once every girl finds their boyfriends they will start a
new round of this game—marriage match. At the end of each round, every
girl will start to find a new boyfriend, who she has not chosen before.
So the game goes on and on.
Now, here is the question for you, how many rounds can these 2n kids totally play this game?
Each
test case starts with three integer n, m and f in a line
(3<=n<=100,0<m<n*n,0<=f<n). n means there are 2*n
children, n girls(number from 1 to n) and n boys(number from 1 to n).
Then m lines follow. Each line contains two numbers a and b, means girl a and boy b had never quarreled with each other.
Then f lines follow. Each line contains two numbers c and d, means girl c and girl d are good friends.
4 5 2
1 1
2 3
3 2
4 2
4 4
1 4
2 3
#include<iostream>
#include<cstdio>
#include<cstring>
#include <algorithm>
#include <math.h>
#include <queue>
using namespace std;
const int N = ;
const int INF = ;
struct Edge{
int v,w,next;
}edge[N*N];
int head[N];
int level[N];
int tot,max_increase;
void init()
{
memset(head,-,sizeof(head));
tot=;
}
void addEdge(int u,int v,int w,int &k)
{
edge[k].v = v,edge[k].w=w,edge[k].next=head[u],head[u]=k++;
edge[k].v = u,edge[k].w=,edge[k].next=head[v],head[v]=k++;
}
int BFS(int src,int des)
{
queue<int>q;
memset(level,,sizeof(level));
level[src]=;
q.push(src);
while(!q.empty())
{
int u = q.front();
q.pop();
if(u==des) return ;
for(int k = head[u]; k!=-; k=edge[k].next)
{
int v = edge[k].v;
int w = edge[k].w;
if(level[v]==&&w!=)
{
level[v]=level[u]+;
q.push(v);
}
}
}
return -;
}
int dfs(int u,int des,int increaseRoad){
if(u==des||increaseRoad==) {
return increaseRoad;
}
int ret=;
for(int k=head[u];k!=-;k=edge[k].next){
int v = edge[k].v,w=edge[k].w;
if(level[v]==level[u]+&&w!=){
int MIN = min(increaseRoad-ret,w);
w = dfs(v,des,MIN);
if(w > )
{
edge[k].w -=w;
edge[k^].w+=w;
ret+=w;
if(ret==increaseRoad){
return ret;
}
}
else level[v] = -;
if(increaseRoad==) break;
}
}
if(ret==) level[u]=-;
return ret;
}
int Dinic(int src,int des)
{
int ans = ;
while(BFS(src,des)!=-) ans+=dfs(src,des,INF);
return ans;
}
bool vis[N][N],vis1[N][N];
int n,m,f;
int father[N];
int _find(int u){
if(father[u]!=u){
father[u] = _find(father[u]);
}
return father[u];
}
void build(int c){
init();
for(int i=;i<=n;i++){
for(int j=+n;j<=n+n;j++){
vis[i][j] = vis1[i][j];
}
}
int src = ,des = *n+;
for(int i=;i<=n;i++){
addEdge(src,i,c,tot);
addEdge(i+n,des,c,tot);
}
for(int i=;i<=n;i++){
for(int j=+n;j<=n+n;j++){
if(vis[i][j]) addEdge(i,j,,tot);
}
}
/**本题难点*/
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
if(_find(i)==_find(j)){
for(int k=+n;k<=*n;k++){
if(vis[i][k]&&!vis[j][k]){
addEdge(j,k,,tot);
vis[j][k] = ;
}
}
}
}
}
}
int main()
{
int tcase;
scanf("%d",&tcase);
while(tcase--){
scanf("%d%d%d",&n,&m,&f);
for(int i=;i<=n;i++) father[i] = i;
memset(vis,false,sizeof(vis));
memset(vis1,false,sizeof(vis1));
for(int i=;i<=m;i++){
int u,v;
scanf("%d%d",&u,&v);
v+=n;
vis[u][v] = vis1[u][v] = true;
}
for(int i=;i<=f;i++){
int u,v;
scanf("%d%d",&u,&v);
int a = _find(u),b = _find(v);
father[a] = b;
}
int l =,r = n,ans = ;
while(l<=r){
int mid = (l+r)>>;
build(mid);
if(Dinic(,*n+)==n*mid){
ans = mid;
l = mid+;
}else r = mid-;
}
printf("%d\n",ans);
}
return ;
}
题解二:二分图,建好边之后每次匹配完如果最大匹配还是n的话就删完匹配边继续进行下一次匹配,知道最大匹配<n.难点还是在于建图.
#include<iostream>
#include<cstdio>
#include<cstring>
#include <algorithm>
#include <math.h>
#include <queue>
using namespace std;
const int N = ;
int graph[N][N];
int linker[N];
bool vis[N];
int father[N];
int n,m,f;
int _find(int u){
if(father[u]!=u){
father[u] = _find(father[u]);
}
return father[u];
}
bool dfs(int u){
for(int v=;v<=n;v++){
if(graph[u][v]&&!vis[v]){
vis[v] = true;
if(linker[v]==-||dfs(linker[v])){
linker[v] = u;
return true;
}
}
}
return false;
}
int main()
{
int tcase;
scanf("%d",&tcase);
while(tcase--){
scanf("%d%d%d",&n,&m,&f);
for(int i=;i<=n;i++) father[i] = i;
memset(graph,,sizeof(graph));
for(int i=;i<=m;i++){
int u,v;
scanf("%d%d",&u,&v);
graph[u][v] = ;
}
for(int i=;i<=f;i++){
int u,v;
scanf("%d%d",&u,&v);
int a = _find(u),b = _find(v);
father[a] = b;
}
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
if(_find(i)==_find(j)){
for(int k=;k<=n;k++){
if(graph[i][k]) graph[j][k] = ;
}
}
}
}
int ans = ;
while(){
int res = ;
memset(linker,-,sizeof(linker));
for(int i=;i<=n;i++){
memset(vis,false,sizeof(vis));
if(dfs(i)) res++;
}
if(res<n) break;
ans++;
for(int i=;i<=n;i++){
if(linker[i]!=-){
graph[linker[i]][i] = ;
}
}
}
printf("%d\n",ans);
}
return ;
}
总结:能用二分图就别用网络流。
hdu 3081(二分+并查集+最大流||二分图匹配)的更多相关文章
- hdu3081 Marriage Match II(二分+并查集+最大流)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3081 题意: n个女生与n个男生配对,每个女生只能配对某些男生,有些女生相互是朋友,每个女生也可以跟她 ...
- HDU 3081 Marriage Match II (二分+并查集+最大流)
题意:N个boy和N个girl,每个女孩可以和与自己交友集合中的男生配对子;如果两个女孩是朋友,则她们可以和对方交友集合中的男生配对子;如果女生a和女生b是朋友,b和c是朋友,则a和c也是朋友.每一轮 ...
- Marriage Match II(二分+并查集+最大流,好题)
Marriage Match II http://acm.hdu.edu.cn/showproblem.php?pid=3081 Time Limit: 2000/1000 MS (Java/Othe ...
- HDU 3081 Marriage Match II (网络流,最大流,二分,并查集)
HDU 3081 Marriage Match II (网络流,最大流,二分,并查集) Description Presumably, you all have known the question ...
- 洛谷P2498 [SDOI2012]拯救小云公主 【二分 + 并查集】
题目 英雄又即将踏上拯救公主的道路-- 这次的拯救目标是--爱和正义的小云公主. 英雄来到boss的洞穴门口,他一下子就懵了,因为面前不只是一只boss,而是上千只boss.当英雄意识到自己还是等级1 ...
- 洛谷:P1783 海滩防御(二分+并查集 最短路 最小生成树)
题意: 给定长度为N的海滩,然后有M做防御塔,给出每座塔的位置Xi,到海岸的距离Yi. 求防御塔上最小观测半径Ri,使得海滩被封锁. 思路:要使左边界和右边界连通. 很nice,可以二分+并查集做. ...
- POJ2349二分+并查集,类似最小树的贪心
题意: 给你n个点,你的任务是构建一颗通讯树,然后给你一个s表示可以选出来s个点两两通讯不花钱,就是费用是0,其他的费用就是两点的距离,有个要求就是其他的费用中最大的那个最小. 思路: ...
- HDU 3277Marriage Match III(二分+并查集+拆点+网络流之最大流)
题目地址:HDU 3277 这题跟这题的上一版建图方法差点儿相同,仅仅只是须要拆点.这个点拆的也非常巧妙,既限制了流量,还仅仅限制了一部分,曾经一直以为拆点会所有限制,原来也能够用来分开限制,学习了. ...
- HDU 2818 (矢量并查集)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2818 题目大意:每次指定一块砖头,移动砖头所在堆到另一堆.查询指定砖头下面有几块砖头. 解题思路: ...
随机推荐
- mysql主从同步加读写分离
首先主从同步,一旦建立,指定了用户,就不能更改了,否则会有错误.1063 Error 'Duplicate entry '%-test-' for key 'PRIMARY'' on query. D ...
- 背景建模技术(二):BgsLibrary的框架、背景建模的37种算法性能分析、背景建模技术的挑战
背景建模技术(二):BgsLibrary的框架.背景建模的37种算法性能分析.背景建模技术的挑战 1.基于MFC的BgsLibrary软件下载 下载地址:http://download.csdn.ne ...
- Matrix.(POJ-2155)(树状数组)
题目是让每次对一个子矩阵进行翻转(0变1,1变0), 然后有多次询问,询问某个点是0还是1 这题可以用二维的树状数组来解决,考虑传统的树状数组是改变某个点,然后查询某一段, 而这个题是改变某一段,查询 ...
- ringbuffer
http://blog.csdn.net/xiaolang85/article/details/38419163
- HDU 1950 LIS(nlogn)
Bridging signals Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- eclipse如何远程debug/断开远程debug
eclipse如何远程debug? 当你的代码已经部署到生产或者测试环境的时候,你如何debug判断线上的问题呢? debug之前必须保证本地代码和远程代码完全一致,否则将不能建立连接 在eclips ...
- Create MSSQL Procedure
代码: CREATE PROCEDURE [dbo].[sp_UpdateCouponCount] AS GO
- Item 11 谨慎地覆盖Clone
1.进行浅拷贝时,只是复制原始数据类型的值,则可以通过覆盖Clone方法来达到.另外,在进行浅拷贝的时候,还要注意,成员对象中不应该要有引用类型,如果有引用类型,那么,进行了浅拷贝之后,两个对象将会共 ...
- 我要AFO啦好伤感啊
我要AFO啦 虽然一直很垃圾 但是也很开心 接下来我要去学物理啦 原因是今天早上没有吃早餐?! 就这样把~ 白白
- 【点分治练习题·不虚就是要AK】点分治
不虚就是要AK(czyak.c/.cpp/.pas) 2s 128M by zhb czy很火.因为又有人说他虚了.为了证明他不虚,他决定要在这次比赛AK. 现在他正在和别人玩一个游戏:在一棵树上 ...