Description

神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种
傻×必然不会了,于是向你来请教……多组输入

Input

第一行一个整数T 表述数据组数接下来T行,每行两个正整数,表示N, M

Output

T行,每行一个整数表示第i组数据的结果

Sample Input

2
10 10
100 100

Sample Output

30
2791

HINT

T = 10000
N, M <= 10000000

Solution

以下均为n<m。

$\sum_{p\in prime}\sum_{a=1}^n\sum_{b=1}^m[gcd(a,b)=p]$

$\sum_{p\in prime}\sum_{a=1}^{\left \lfloor \frac{n}{p} \right \rfloor}\sum_{b=1}^{\left \lfloor \frac{m}{p} \right \rfloor}[gcd(a,b)=1]$

$\sum_{p\in prime}\sum_{a=1}^{\left \lfloor \frac{n}{p} \right \rfloor}\sum_{b=1}^{\left \lfloor \frac{m}{p} \right \rfloor}\sum_{d|gcd(a,b)}\mu(d)$

$\sum_{p\in prime}\sum_{d=1}^{\left \lfloor \frac{n}{p} \right \rfloor}\mu(d){\left \lfloor \frac{n}{pd} \right \rfloor}{\left \lfloor \frac{m}{pd} \right \rfloor}$

推到这和前面做过的几个题是一样的……然后就不会了QAQ……

设$pd=T$

$\sum_{T=1}^{n}{\left \lfloor \frac{n}{T} \right \rfloor}{\left \lfloor \frac{m}{T} \right \rfloor}\sum_{p|T}\mu(\frac{T}{p})$

j接下来只需要求出$\sum_{p|T}\mu(\frac{T}{p})$的前缀和就好了。暴力枚举每个质数去更新ta的倍数即可。

Code

 #include<iostream>
#include<cstdio>
#define N (10000000)
using namespace std; int T,n,m,vis[N+],prime[N+],mu[N+],cnt;
long long sum[N+]; void Get_mu()
{
mu[]=;
for (int i=; i<=N; ++i)
{
if (!vis[i]){prime[++cnt]=i; mu[i]=-;}
for (int j=; j<=cnt && prime[j]*i<=N; ++j)
{
vis[prime[j]*i]=true;
if (i%prime[j]==) break;
mu[prime[j]*i]=-mu[i];
}
}
for (int i=; i<=cnt; ++i)
for (int j=; j*prime[i]<=N; ++j)
sum[j*prime[i]]+=mu[j];
for (int i=; i<=N; ++i) sum[i]+=sum[i-];
} long long Calc(int n,int m)
{
long long ans=; if (n>m) swap(n,m);
for (int l=,r; l<=n; l=r+)
{
r=min(n/(n/l),m/(m/l));
ans+=(sum[r]-sum[l-])*(n/l)*(m/l);
}
return ans;
} int main()
{
scanf("%d",&T);
Get_mu();
while (T--)
{
scanf("%d%d",&n,&m);
printf("%lld\n",Calc(n,m));
}
}

BZOJ2820:YY的GCD(莫比乌斯反演)的更多相关文章

  1. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  2. bzoj 2820 YY的GCD 莫比乌斯反演

    题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性 ...

  3. BZOJ2820 YY的GCD 莫比乌斯+系数前缀和

    /** 题目:BZOJ2820 YY的GCD 链接:http://www.cogs.pro/cogs/problem/problem.php?pid=2165 题意:神犇YY虐完数论后给傻×kAc出了 ...

  4. 【BZOJ2820】YY的GCD(莫比乌斯反演 数论分块)

    题目链接 大意 给定多组\(N\),\(M\),求\(1\le x\le N,1\le y\le M\)并且\(Gcd(x, y)\)为质数的\((x, y)\)有多少对. 思路 我们设\(f(i)\ ...

  5. 【BZOJ2820】YY的GCD [莫比乌斯反演]

    YY的GCD Time Limit: 10 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description 求1<=x<=N, ...

  6. BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】

    2820: YY的GCD Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1624  Solved: 853[Submit][Status][Discu ...

  7. 洛谷P2257 YY的GCD 莫比乌斯反演

    原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...

  8. Luogu P2257 YY的GCD 莫比乌斯反演

    第一道莫比乌斯反演...$qwq$ 设$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d]$ $F(n)=\sum_{n|d}f(d)=\lfloor \frac{N ...

  9. BZOJ 2820 luogu 2257 yy的gcd (莫比乌斯反演)

    题目大意:求$gcd(i,j)==k,i\in[1,n],j\in[1,m] ,k\in prime,n,m<=10^{7}$的有序数对个数,不超过10^{4}次询问 莫比乌斯反演入门题 为方便 ...

随机推荐

  1. Codeforces 494E. Sharti

    Description 有一个 \(n*n\) 的矩形,给出 \(m\) 个子矩形,这些矩形内部的点都是白色的,其余的点都是黑色,每一次你可以选择一个变长不超过 \(k\) 的正方形,满足这个正方形的 ...

  2. IT自由职业者的第一个月(下)——为什么放弃5年嵌入式驱动开发转到WEB开发?

        如果单从兴趣来看,其实我对Linux内核,Android中间件的兴趣要高于WEB,何况还有这么多年的经验积累,何必从头探索一个新的技术方向呢?     这里面原因是很多的,最核心的大概是以下4 ...

  3. Firebird Procedure 带返回的存储过程

    火鸟定义带返回的存储过程是这样,先定义返回结果字段列表,然后为返回字段一一赋值,当你需要返回一行时,就suspend. 当需要返回多行时,就再次为返回字段变量赋值,suspend. 示例: creat ...

  4. JAVA数据类型中的char类型

    1.JAVA中,char占2字节,16位.可在存放汉字 2.char赋值 char a='a'; //任意单个字符,加单引号. char a='中';//任意单个中文字,加单引号. char a=11 ...

  5. Python中元组和列表

    一.list列表的操作包括以下函数: 列表操作包括以下函数: 1.cmp(list1,list2) :比较两个列表的元素 2.len(list) :列表元素个数 3.max(list) :返回列表元素 ...

  6. crontab 切割日志

    cutlog.sh #!/bin/sh source /etc/profile D=$(date "+%Y%m%d%H%M%S") mv "/usr/local/Cell ...

  7. 廖雪峰JavaScript练习题

    练习:不要使用JavaScript内置的parseInt()函 数,利用map和reduce操作实现一个string2int()函数: <!DOCTYPE html> <html&g ...

  8. 利用setTimeoutc处理javascript ajax请求超时

    用过jquery的人都知道里面的$.ajax能设置超时处理及各种错误的抛出,确实好用.原生的js没有对应的方法,还得写各种兼容.在实际运用中,不管请求是否成功都应该做容错处理, 不然用户不知道到底发生 ...

  9. CentOS新增硬盘,重新扫描总线

    Centos 新增硬盘以后,系统不能自动进行识别. 1. 由于不知道新增硬盘挂载的位置,可以先查看现有硬盘挂载的适配器. [root@localhost ~]# ls -l /sys/block/sd ...

  10. 转:hive-列转行和行转列

    1. 假设我们在hive中有两张表,其中一张表是存用户基本信息,另一张表是存用户的地址信息等,表数据假设如下: user_basic_info: id name 1 a 2 b 3 c 4 d use ...