https://www.lydsy.com/JudgeOnline/problem.php?id=3456

求出n个点的简单(无重边无自环)无向连通图数目

模数很熟悉,先敲一个NTT。

然后通过推导式子就做完啦!

我觉得就算怎么讲也没有下面这一位好:http://blog.miskcoo.com/2015/05/bzoj-3456

另外多项式求逆:http://blog.miskcoo.com/2015/05/polynomial-inverse

至少我学到了:当你有个卷积知道答案,求卷积的一项时转换成生成函数再FFT一下就好了。

#include<cstdio>
#include<cctype>
#include<cstring>
#include<vector>
#include<cmath>
#include<algorithm>
#include<iostream>
using namespace std;
typedef long long ll;
const ll P=;
const int G=;
const int N=5e5+;
ll qpow(ll a,ll n,ll p){
ll res=;
while(n){
if(n&)res=res*a%p;
a=a*a%p;n>>=;
}
return res;
}
void MTT(ll a[],int n,int on){
for(int i=,j=n>>;i<n-;i++){
if(i<j)swap(a[i],a[j]);
int k=n>>;
while(j>=k){j-=k;k>>=;}
if(j<k)j+=k;
}
for(int i=;i<=n;i<<=){
ll res=qpow(G,(P-)/i,P);
for(int j=;j<n;j+=i){
ll w=;
for(int k=j;k<j+i/;k++){
ll u=a[k],t=w*a[k+i/]%P;
a[k]=(u+t)%P;
a[k+i/]=(u-t+P)%P;
w=w*res%P;
}
}
}
if(on==-){
ll inv=qpow(n,P-,P);
a[]=a[]*inv%P;
for(int i=;i<=n/;i++){
a[i]=a[i]*inv%P;
if(i!=n-i)a[n-i]=a[n-i]*inv%P;
swap(a[i],a[n-i]);
}
}
}
ll t[N];
void inv(int deg,ll a[],ll b[]){
if(deg==){
b[]=qpow(a[],P-,P);
return;
}
inv((deg+)>>,a,b);
int n=;
while(n<(deg<<))n<<=;
for(int i=;i<deg;i++)t[i]=a[i];
for(int i=deg;i<n;i++)t[i]=;
MTT(t,n,);MTT(b,n,);
for(int i=;i<n;i++)
b[i]=b[i]*(-b[i]*t[i]%P+P)%P;
MTT(b,n,-);
for(int i=deg;i<n;i++)b[i]=;
}
int n;
ll f[N],g[N],tmp[N],c[N],jc[N],C[N][];
inline void init(){
jc[]=jc[]=;C[][];
for(int i=;i<=n;i++)jc[i]=jc[i-]*i%P;
for(int i=;i<=n;i++)C[i][]=C[i-][]+i-;
}
int main(){
scanf("%d",&n);init();
for(int i=;i<=n;i++){
g[i]=qpow(,C[i][],P)*qpow(jc[i],P-,P)%P;
if(i)c[i]=qpow(,C[i][],P)*qpow(jc[i-],P-,P)%P;
}
int nn=;
while(nn<=n)nn<<=; inv(nn,g,tmp);memcpy(g,tmp,sizeof(tmp)); MTT(g,nn,);MTT(c,nn,);
for(int i=;i<nn;i++)f[i]=g[i]*c[i]%P;
MTT(f,nn,-); f[n]=f[n]*jc[n-]%P;
printf("%lld\n",f[n]);
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/ +

+++++++++++++++++++++++++++++++++++++++++++

BZOJ3456:城市规划——题解的更多相关文章

  1. BZOJ3456 城市规划 【多项式求ln】

    题目链接 BZOJ3456 题解 真是一道经典好题,至此已经写了分治\(NTT\),多项式求逆,多项式求\(ln\)三种写法 我们发现我们要求的是大小为\(n\)无向联通图的数量 而\(n\)个点的无 ...

  2. [BZOJ3456]城市规划(生成函数+多项式求逆+多项式求ln)

    城市规划 时间限制:40s      空间限制:256MB 题目描述 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了.  刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一 ...

  3. BZOJ3456 城市规划 【多项式求逆】

    题目链接 BZOJ3456 题解 之前我们用分治\(ntt\)在\(O(nlog^2n)\)的复杂度下做了这题,今天我们使用多项式求逆 设\(f_n\)表示\(n\)个点带标号无向连通图数 设\(g_ ...

  4. BZOJ3456 城市规划 【分治NTT】

    题目链接 BZOJ3456 题解 据说这题是多项式求逆 我太弱不会QAQ,只能\(O(nlog^2n)\)分治\(NTT\) 设\(f[i]\)表示\(i\)个节点的简单无向连通图的数量 考虑转移,直 ...

  5. BZOJ3456: 城市规划

    Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得整个国家的任意两个城市都直接或 ...

  6. BZOJ3456城市规划

    题目描述 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了.刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得整个国家的任意两个城市都直接或间接的连通.为了 ...

  7. BZOJ3456 城市规划(多项式求逆)

    设f[i]为连通图的数量,g[i]为不连通图的数量,显然有f[i]=2i*(i-1)/2-g[i],g[i]通过枚举1所在连通块大小转移,有g[i]=Σf[j]*C(i-1,j-1)·2(i-j)*( ...

  8. bzoj3456城市规划 多项式取模

    題目大意 求出有n个点的有标号简单连通无向图的数目. 题解 什么破玩意,直接输出\(2^{C_n^2}\)走人 我们发现这张图要求连通,而上式肯定不能保证连通. 其实上式表示的是不保证连通的有标号简单 ...

  9. BZOJ3456 城市规划 【生成函数】【FFT】

    题目分析: 容易想到生成函数的构造方法. 令g(n)表示n个点的无向图个数,f(n)表示n个点的无向连通图的个数.式子是显然的. 容易发现式子是卷积的形式,写出生成函数,然后多项式求逆后多项式乘法即可 ...

随机推荐

  1. hive 中的float和double

    表employees中字段 taxes(税率)用类型float存储 hive> select name, salary, taxes from employees where taxes  &g ...

  2. 微信小程序—day04

    元素水平+垂直居中 昨天的用户页的用户头像,是根据已知的像素大小,设置固定的值,达到居中的效果. 今日切换机型进行适配,发现对不同尺寸大小的屏幕不匹配.所以对wxss进行修改,真正达到水平+垂直居中. ...

  3. python3 小实践(一)——selenium获取的cookie传递

    from selenium import webdriver from time import sleep import requests import pickle #获取登录后的cookies c ...

  4. C#使用EF连接PGSql数据库

    前言 由于项目需要,使用到了PGSql数据库,说实话这是第一次接触并且听说PGSql(PostgreSQL)关系型数据库,之前一直使用的都是SqlServer,一头雾水的各种找资源,终于将PGSql与 ...

  5. python基本数据类型——集合

    集合 无序可变序列,集合中元素不允许重复,即每个元素都是唯一的 集合中的元素按照升序排列 # 创建集合 >>aset = set([0,2,4,5,7,2,3,5,9,0]) >&g ...

  6. 如何借助windows的VHD引导特性实现VHD多windows系统共存

    近期,由于一些需要,需要运行3个windows系统,具体需要如何此处略去,现将实现方式共享如下. 测试环境: HP 820 G2, 4G内存, 500G SSD硬盘 windows 7 企业版 win ...

  7. SIG蓝牙mesh笔记2_mesh组成

    目录 SIG 蓝牙 mesh 组成 mesh网络概述 网络和子网 设备和节点 devices & nodes 入网 mesh中的几个概念 智能插座例子 SIG 蓝牙 mesh 组成 mesh网 ...

  8. SpringBoot项目打包成jar后,启动脚本

    将springboot项目打包成jar后,上传至服务器,每次都需要手敲命令,重新部署项目,可将这些命令写入脚本中,直接运行. 启动脚本(start.sh): CUR_PATH=$(cd "$ ...

  9. ZOJ 3229 Shoot the Bullet(有源汇的上下界最大流)

    Description Gensokyo is a world which exists quietly beside ours, separated by a mystical border. It ...

  10. JavaScript闭包总结

    闭包是你家庭中的第三者你在享受着第三者给你带来的便利时,而你的家庭也随时触发前所未有的危机(直男癌患者的观点);闭包是指有权访问另一个函数作用域中的变量的函数,创建闭包的常见的方式,就是在一个函数内部 ...