AOJ0189

http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=0189

题意

求某一办公室到其他办公室的最短距离。

多组输入,n表示n条关系,下面n次每次输入 x y d表示x到y的距离是d。需要注意的是n没有给定,需要根据输入来求。

输出办公室的编号和距离。

思路

任意两点之间的最短距离用floyd算法比较合适。

代码

#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std; const int N = 10;
const int M = 10;
const int INF = 0x3f3f3f3f; int d[N][N];
int n; void input()
{
for (int i = 0; i < N; i ++)
fill(d[i], d[i]+N, INF);
int m;
cin >> m;
n = 0;
while ( m-- ) {
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
d[a][b] = d[b][a] = c;
n = max(max(n, a+1), b+1);
}
} void solve()
{
for (int k = 0; k < n; k ++) {
for (int i = 0; i < n; i ++) {
for (int j = 0; j < n; j ++) {
d[i][j] = min(d[i][j], d[i][k]+d[k][j]);
}
}
} int sum, msum = INF;
int id = 0;
for (int i = 0; i < n; i ++) {
sum = 0;
for (int j = 0; j < n; j ++) {
if (i == j) continue;
sum += d[i][j];
}
if (sum < msum) {
msum = sum;
id = i;
}
}
printf("%d %d\n", id, msum);
} int main(void)
{
int m;
while ( cin >> m && m ) {
for (int i = 0; i < N; i ++)
fill(d[i], d[i]+N, INF);
n = 0;
while ( m-- ) {
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
d[a][b] = d[b][a] = c;
n = max(max(n, a+1), b+1);
}
solve();
}
return 0;
}

POJ2139

http://poj.org/problem?id=2139

题意

奶牛们最近要拍电影了……

1、若两个的奶牛一起工作则,他们相互的度(degrees)为;

2、若两只奶牛a、b不一起工作,但与另有一只奶牛都和他们工作,则a、b的相互的度为2。

求奶牛的与其他奶牛的度的平均值的100的整数。

思路

本题题意可以变换的理解为如果N个点在一个集合中,则这些点之间的距离为1。然后由此建立一个无向图。在这N个点中,每一个点与其他的所有点都有一个连接的路径长度,将这些长度都加起来,然后除以N-1,就求出了平均长度。题目所求为这些平均长度中的最小值,然后将最小值乘以100输出。

由于所有点到其他点的距离都要求,这个题用floyd算法最为合适,但也可用dijkstra算法计算N次求解,其中dij算法的实现又分使用邻接矩阵和邻接表两种实现方式。

因此解法有三种,我都实现了。

代码1(floyd)

Source Code

Problem: 2139       User: liangrx06
Memory: 368K Time: 32MS
Language: C++ Result: Accepted
Source Code
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std; const int N = 300;
const int INF = 0x3f3f3f3f; int d[N+1][N+1];
int n; void input()
{
int m;
cin >> n >> m;
for (int i = 1; i <= n; i ++)
fill(d[i]+1, d[i]+1+n, INF);
while ( m-- ) {
int k, movie[N];
cin >> k;
for (int i = 0; i < k; i++) {
scanf("%d", &movie[i]);
}
for (int i = 0; i < k; i++) {
for (int j = i+1; j < k; j++) {
d[movie[i]][movie[j]] = 1;
d[movie[j]][movie[i]] = 1;
}
}
}
} void solve()
{
for (int k = 1; k <= n; k ++) {
for (int i = 1; i <= n; i ++) {
for (int j = 1; j <= n; j ++) {
d[i][j] = min(d[i][j], d[i][k]+d[k][j]);
}
}
} int sum;
int msum = INF;
for (int i = 1; i <= n; i ++) {
sum = 0;
for (int j = 1; j <= n; j ++) {
if (i == j) continue;
sum += d[i][j];
}
msum = (sum < msum) ? sum : msum;
}
double res = (double)msum / (n-1) * 100;
printf("%d\n", (int)res);
} int main(void)
{
input();
solve();
return 0;
}

代码2(dijkstra-邻接矩阵)

Source Code

Problem: 2139       User: liangrx06
Memory: 336K Time: 16MS
Language: C++ Result: Accepted
Source Code
#include <iostream>
#include <cstdio>
using namespace std; const int N = 300;
const int INF = 0x3f3f3f3f; int cost[N+1][N+1];
int d[N+1];
bool v[N+1];
int n; void input()
{
int m;
cin >> n >> m;
for (int i = 1; i <= n; i ++)
fill(cost[i]+1, cost[i]+1+n, INF);
while ( m-- ) {
int k, movie[N];
cin >> k;
for (int i = 0; i < k; i++) {
scanf("%d", &movie[i]);
}
for (int i = 0; i < k; i++) {
for (int j = i+1; j < k; j++) {
cost[movie[i]][movie[j]] = 1;
cost[movie[j]][movie[i]] = 1;
}
}
}
} int dijkstra(int s)
{
fill(d+1, d+1+n, INF);
fill(v+1, v+1+n, false);
d[s] = 0; while ( true ) {
int u = -1;
for (int i = 1; i <= n; i ++) {
if ( !v[i] && ( u == -1 || d[i] < d[u] ) )
u = i;
}
if ( u == -1 )
break;
v[u] = true;
for (int i = 1; i <= n; i ++) {
if ( !v[i] && d[u] + cost[u][i] < d[i] )
d[i] = d[u] + cost[u][i];
}
} int sum = 0;
for (int i = 1; i <= n; i ++)
sum += d[i];
return sum;
} void solve()
{
int sum;
int msum = INF;
for (int i = 1; i <= n; i ++) {
sum = dijkstra(i);
msum = (sum < msum) ? sum : msum;
}
double res = (double)msum / (n-1) * 100;
printf("%d\n", (int)res);
} int main(void)
{
input();
solve();
return 0;
}

代码3(dijkstra-邻接表)

Source Code

Problem: 2139       User: liangrx06
Memory: 236K Time: 32MS
Language: C++ Result: Accepted
Source Code
#include <iostream>
#include <cstdio>
#include <queue>
#include <vector>
using namespace std; const int N = 300;
const int INF = 0x3f3f3f3f; struct Edge {
int to, cost;
Edge(int t, int c) {
to = t;
cost = c;
}
};
typedef pair<int, int> P; int n;
int d[N+1];
vector<Edge> G[N+1]; void input()
{
int m;
cin >> n >> m;
while ( m-- ) {
int k, movie[N];
cin >> k;
for (int i = 0; i < k; i++) {
scanf("%d", &movie[i]);
}
for (int i = 0; i < k; i++) {
for (int j = i+1; j < k; j++) {
G[movie[i]].push_back(Edge(movie[j], 1));
G[movie[j]].push_back(Edge(movie[i], 1));
}
}
}
} int dijkstra(int s) {
priority_queue<P, vector<P>, greater<P> > que;
fill(d+1, d+1+n, INF);
d[s] = 0;
que.push(P(0, s)); while ( !que.empty() ) {
P p = que.top(); que.pop();
int u = p.second;
if (d[u] < p.first) continue;
for (int i = 0; i < G[u].size(); i++) {
Edge e = G[u][i];
if ( d[e.to] > d[u] + e.cost) {
d[e.to] = d[u] + e.cost;
que.push(P(d[e.to], e.to));
}
}
} int sum = 0;
for (int i = 1; i <= n; i ++)
sum += d[i];
return sum;
} void solve()
{
int sum;
int msum = INF;
for (int i = 1; i <= n; i ++) {
sum = dijkstra(i);
msum = (sum < msum) ? sum : msum;
}
double res = (double)msum / (n-1) * 100;
printf("%d\n", (int)res);
} int main(void)
{
input();
solve();
return 0;
}

《挑战程序设计竞赛》2.5 最短路 AOJ0189 2249 2200 POJ3255 2139 3259 3268(5)的更多相关文章

  1. Aizu 2249Road Construction 单源最短路变形《挑战程序设计竞赛》模板题

    King Mercer is the king of ACM kingdom. There are one capital and some cities in his kingdom. Amazin ...

  2. 《挑战程序设计竞赛》2.3 动态规划-优化递推 POJ1742 3046 3181

    POJ1742 http://poj.org/problem?id=1742 题意 有n种面额的硬币,面额个数分别为Ai.Ci,求最多能搭配出几种不超过m的金额? 思路 据说这是传说中的男人8题呢,对 ...

  3. 挑战程序设计竞赛》P345 观看计划

                                                 <挑战程序设计竞赛>P345 观看计划 题意:一周一共有M个单位的时间.一共有N部动画在每周si时 ...

  4. POJ 2386 Lake Counting 题解《挑战程序设计竞赛》

    地址 http://poj.org/problem?id=2386 <挑战程序设计竞赛>习题 题目描述Description Due to recent rains, water has ...

  5. poj 3253 Fence Repair 贪心 最小堆 题解《挑战程序设计竞赛》

    地址 http://poj.org/problem?id=3253 题解 本题是<挑战程序设计>一书的例题 根据树中描述 所有切割的代价 可以形成一颗二叉树 而最后的代价总和是与子节点和深 ...

  6. 迷宫问题_BFS_挑战程序设计竞赛p34

    给定一个N*M的迷宫,求从起点到终点的最小步数. N,M<100: 输入: 10 10#S######.#......#..#.#.##.##.#.#........##.##.####.... ...

  7. 《挑战程序设计竞赛》 4.1.1 矩阵 P286

    想写几篇挑战的感悟,也有助于自己理解这本书.但这上面大多贴的是书上的代码,主要是为了用的时候后直接复制就好了,这样就很方便了,就相当于黑盒模板了. 1.线性方程组 /** \brief 高斯消元法 * ...

  8. 【网络流#9】POJ 2135 Farm Tour 最小费用流 - 《挑战程序设计竞赛》例题

    [题意]给出一张无向图,从1开始到n,求两条没有公共边的最短路,使得路程总和最小 每条边的权值设为费用,最大流量设为1,然后就是从源点到汇点流量为2的最小费用流. 因为是规定了流量,新建一个源点和一个 ...

  9. 《挑战程序设计竞赛》2.1 深度优先搜索 POJ2386 POJ1979 AOJ0118 AOJ0033 POJ3009

    POJ2386 Lake Counting Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 25366   Accepted: ...

随机推荐

  1. Win10怎么打开或关闭自动维护功能

  2. unity, 删除animationEvent

    当初给Player的一个animation加了个animationEvent,后来与之关联的响应函数删除了,于是导致报错: ‘Player’ AnimationEvent ‘idleHalfEvent ...

  3. 【剑指offer】Q17:合并两个排序的链表

    def Merge(head1, head2): if head1 == None: return head2 if head2 == None: return head1 psuhead = Lis ...

  4. Centos下源码安装git

    1.centos下git版本太久了,才1.8几,而官方更新的还是很活跃的,于是我就想源码安装一个新版本. 2.首先到: https://github.com/git/git/releases 下载最新 ...

  5. WCF问题集锦:未依照DataMember定义的名称序列化对象

    今遇到WCF序列化BUG,代码例如以下: /// <summary> /// 包括数据的返回对象 /// </summary> /// <typeparam name=& ...

  6. mahout相关介绍

    https://blog.csdn.net/xiaopihaierletian/article/details/72674592 https://www.cnblogs.com/zlslch/p/67 ...

  7. extjs增删改查(自己调用extjs)

    jsp页面如下:materialsDetail.jsp <%@ page language="java" import="java.util.*" pag ...

  8. (译)Getting Started——1.2.3 Defining the Interaction(定义交互)

    IOS应用编程是基于事件驱动的编程.也就是说,应用的流程由事件来决定:事件包括系统事件和用户操作.界面上用户执行的操作会触发事件.这些事件导致应用的逻辑被执行,数据被操作.应用对用户动作的响应反映在界 ...

  9. 手把手教你Chrome扩展开发:本地存储篇

    手把手教你开发chrome扩展一:开发Chrome Extenstion其实很简单 手把手教你开发Chrome扩展二:为html添加行为 手把手教你开发Chrome扩展三:关于本地存储数据 HTML5 ...

  10. 【Java】之static静态方法与非static静态方法区别

    1.A.class:没有static public class A { public String getText(){ } B.class调用A的方法时 public class B { publi ...