1.查看数据的类型概况

cols = [c for c in train.columns]   #返回数据的列名到列表里

print('Number of features: {}'.format(len(cols)))

print('Feature types:')
train[cols].dtypes.value_counts()

结果如下:

           Number of features: 376
Feature types:
                  Out[5]:
             int64     368
object 8
dtype: int64

2.查看特征的数值范围

counts = [[], [], []]
for c in cols:
    typ = train[c].dtype
    uniq = len(np.unique(train[c]))          #利用np的unique函数看看该列一共有几个不同的数值
    if uniq == 1:                                       #  uniq==1说明该列只有一个数值
        counts[0].append(c)
    elif uniq == 2 and typ == np.int64:   #  uniq==2说明该列有两个数值,往往就是0与1的二类数值
        counts[1].append(c)
    else:
        counts[2].append(c)

print('Constant features: {}\n Binary features: {} \nCategorical features: {}\n'.format(*[len(c) for c in counts]))

print('Constant features:', counts[0])
print('Categorical features:', counts[2])

结果如下:

    Constant features: 12
               Binary features: 356
    Categorical features: 10

    Constant features: ['X11', 'X93', 'X107', 'X233', 'X235', 'X268', 'X289', 'X290', 'X293', 'X297', 'X330', 'X347']
    Categorical features: ['ID', 'y', 'X0', 'X1', 'X2', 'X3', 'X4', 'X5', 'X6', 'X8']

3.画出类别特征值的分布情况

pal = sns.color_palette()

for c in counts[2]:
  value_counts = train[c].value_counts()
  fig, ax = plt.subplots(figsize=(10, 5))
  plt.title('Categorical feature {} - Cardinality {}'.format(c, len(np.unique(train[c]))))
  plt.xlabel('Feature value')
  plt.ylabel('Occurences')
  plt.bar(range(len(value_counts)), value_counts.values, color=pal[1])
  ax.set_xticks(range(len(value_counts)))
  ax.set_xticklabels(value_counts.index, rotation='vertical')
  plt.show()

python进行EDA探索性数据分析的更多相关文章

  1. python Pandas Profiling 一行代码EDA 探索性数据分析

    文章大纲 1. 探索性数据分析 代码样例 效果 解决pandas profile 中文显示的问题 1. 探索性数据分析 数据的筛选.重组.结构化.预处理等都属于探索性数据分析的范畴,探索性数据分析是帮 ...

  2. 功能式Python中的探索性数据分析

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 这里有一些技巧来处理日志文件提取.假设我们正在查看一些Enterprise Splunk提取.我们可以用Splunk来探索数据.或者我们可以 ...

  3. 探索性数据分析(Exploratory Data Analysis,EDA)

    探索性数据分析(Exploratory Data Analysis,EDA)主要的工作是:对数据进行清洗,对数据进行描述(描述统计量,图表),查看数据的分布,比较数据之间的关系,培养对数据的直觉,对数 ...

  4. 探索性数据分析EDA综述

    目录 1. 数据探索的步骤和准备 2. 缺失值处理 为什么需要处理缺失值 Why data has missing values? 缺失值处理的技术 3. 异常值检测和处理 What is an ou ...

  5. Python在金融,数据分析,和人工智能中的应用

    Python在金融,数据分析,和人工智能中的应用   Python最近取得这样的成功,而且未来似乎还会继续下去,这有许多原因.其中包括它的语法.Python开发人员可用的科学生态系统和数据分析库.易于 ...

  6. 基于 Python 和 Pandas 的数据分析(4) --- 建立数据集

    这一节我想对使用 Python 和 Pandas 的数据分析做一些扩展. 假设我们是亿万富翁, 我们会想要多元化地进行投资, 比如股票, 分红, 金融市场等, 那么现在我们要聚焦房地产市场, 做一些这 ...

  7. 基于 Python 和 Pandas 的数据分析(2) --- Pandas 基础

    在这个用 Python 和 Pandas 实现数据分析的教程中, 我们将明确一些 Pandas 基础知识. 加载到 Pandas Dataframe 的数据形式可以很多, 但是通常需要能形成行和列的数 ...

  8. 基于 Python 和 Pandas 的数据分析(1)

    基于 Python 和 Pandas 的数据分析(1) Pandas 是 Python 的一个模块(module), 我们将用 Python 完成接下来的数据分析的学习. Pandas 模块是一个高性 ...

  9. 预备知识-python核心用法常用数据分析库(上)

    1.预备知识-python核心用法常用数据分析库(上) 目录 1.预备知识-python核心用法常用数据分析库(上) 概述 实验环境 任务一:环境安装与配置 [实验目标] [实验步骤] 任务二:Pan ...

随机推荐

  1. error C2143: 语法错误 : 缺少“;”(在“类型”的前面)

    C编程老是遇到这个问题: 错误 error C2143: 语法错误 : 缺少“;”(在“类型”的前面) d:\kinectproject\ceshiglad\ceshiglad\shili.c ces ...

  2. K-means聚类算法与EM算法

    K-means聚类算法 K-means聚类算法也是聚类算法中最简单的一种了,但是里面包含的思想却不一般. 聚类属于无监督学习.在聚类问题中,给我们的训练样本是,每个,没有了y. K-means算法是将 ...

  3. POJ 2785 4 Values whose Sum is 0(折半枚举)

    给出四个长度为n的数列a,b,c,d,求从这四个数列中每个选取一个元素后的和为0的方法数.n<=4000,abs(val)<=2^28. 考虑直接暴力,复杂度O(n^4).显然超时. # ...

  4. 【bzoj2073】[POI2004]PRZ 状态压缩dp

    题目描述 一只队伍在爬山时碰到了雪崩,他们在逃跑时遇到了一座桥,他们要尽快的过桥. 桥已经很旧了, 所以它不能承受太重的东西. 任何时候队伍在桥上的人都不能超过一定的限制. 所以这只队伍过桥时只能分批 ...

  5. snmpwalk的报文检测

    1.先用nc起一个监听的端口,然后看报文是不是正确的: 注:nc是一个模拟各种网络协议的东西,模拟服务器.客户端等: 2.触发告警,让他发报文: 3.用nc模拟一个服务端,启动一个udp的端口163: ...

  6. P3065 [USACO12DEC]第一!First!

    题目描述 Bessie has been playing with strings again. She found that by changing the order of the alphabe ...

  7. Socket网络编程实例1

    Socket: 对所有上层协议(TCP/IP,UDP等)的底层封装. 网络上的两个程序通过一个双向的通信连接实现数据的交换,这个连接的一端称为一个socket. 建立网络通信连接至少要一对端口号(so ...

  8. 虚拟机如何进入BIOS

  9. [GDOI2014]拯救莫莉斯 状压DP

    题面: 莫莉斯·乔是圣域里一个叱咤风云的人物,他凭借着自身超强的经济头脑,牢牢控制了圣域的石油市场. 圣域的地图可以看成是一个n*m的矩阵.每个整数坐标点(x , y)表示一座城市( 1\le x\l ...

  10. HDOJ(HDU).1025 Constructing Roads In JGShining's Kingdom (DP)

    HDOJ(HDU).1025 Constructing Roads In JGShining's Kingdom (DP) 点我挑战题目 题目分析 题目大意就是给出两两配对的poor city和ric ...