Network

Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 13172   Accepted: 4774

题目链接:http://poj.org/problem?id=3694

Description:

A network administrator manages a large network. The network consists of N computers and M links between pairs of computers. Any pair of computers are connected directly or indirectly by successive links, so data can be transformed between any two computers. The administrator finds that some links are vital to the network, because failure of any one of them can cause that data can't be transformed between some computers. He call such a link a bridge. He is planning to add some new links one by one to eliminate all bridges.

You are to help the administrator by reporting the number of bridges in the network after each new link is added.

Input:

The input consists of multiple test cases. Each test case starts with a line containing two integers N(1 ≤ N ≤ 100,000) and M(N - 1 ≤ M ≤ 200,000).
Each of the following M lines contains two integers A and B ( 1≤ A ≠ B ≤ N), which indicates a link between computer A and B. Computers are numbered from 1 to N. It is guaranteed that any two computers are connected in the initial network.
The next line contains a single integer Q ( 1 ≤ Q ≤ 1,000), which is the number of new links the administrator plans to add to the network one by one.
The i-th line of the following Q lines contains two integer A and B (1 ≤ A ≠ B ≤ N), which is the i-th added new link connecting computer A and B.

The last test case is followed by a line containing two zeros.

Output:

For each test case, print a line containing the test case number( beginning with 1) and Q lines, the i-th of which contains a integer indicating the number of bridges in the network after the first i new links are added. Print a blank line after the output for each test case.

Sample Input:

3 2
1 2
2 3
2
1 2
1 3
4 4
1 2
2 1
2 3
1 4
2
1 2
3 4
0 0

Sample Output:

Case 1:
1
0 Case 2:
2
0

题意:

首先给出一个无向图,然后不断加边,每次加一条边就输出当前图中桥有多少个。

题解:

首先单独计算桥很容易,但这个加边操作有点烦人,不可能每次加条边就求次桥吧。然后我们主要想的就是新边和原图的关系。

因为原图是连通的,在原图中,我们很容易把桥求出来,并且将相应的点进行缩点(这里我用的并查集),最后的图中的边都为桥,且无向图变成了树。

那么每次新加入一条边,如果它连接的为不在一个集合中的点,那么必然会影响到从u到v简单路径上面的桥;否则就不影响。

下面关键就是求这个简单路径,由于这个题数据量较小,用个朴素的lca就行了,这里的lca没有用深度来,而是根据dfn,很好地利用了时间戳。

代码如下:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <queue>
using namespace std;
typedef long long ll;
const int N = 1e5+,M = 2e5+;
int n,m,ans;
int head[N];
struct Edge{
int u,v,next;
}e[M<<];
int T,tot;
int dfn[N],low[N],cut[N],f[N],pa[N];
void adde(int u,int v){
e[tot].u=u;e[tot].v=v;e[tot].next=head[u];head[u]=tot++;
}
void init(){
T=;tot=;ans=;
memset(head,-,sizeof(head));
memset(cut,,sizeof(cut));
memset(dfn,,sizeof(dfn));
memset(pa,,sizeof(pa));
for(int i=;i<=n;i++) f[i]=i;
}
int find(int x){
return f[x]==x ? x : f[x]=find(f[x]);
}
void Union(int u,int v){
int fx=find(u),fy=find(v);
if(fx!=fy) f[fx]=fy;
return ;
}
void Tarjan(int u,int pre){
dfn[u]=low[u]=++T;
int son=;
for(int i=head[u];i!=-;i=e[i].next){
int v=e[i].v;
if(v==pre) continue ;
if(!dfn[v]){
pa[v]=u;
Tarjan(v,u);
low[u]=min(low[u],low[v]);
if(low[v]>dfn[u]){
cut[v]=;
ans++;
}else Union(u,v);
}else{
low[u]=min(low[u],dfn[v]);
}
}
}
int lca(int u,int v){
if(dfn[u]<dfn[v]) swap(u,v);
while(dfn[u]>dfn[v]){
int fx=find(u),fy=find(pa[u]);
if(fx!=fy){
ans--;
f[fx]=fy;
}
u=pa[u];
}
while(dfn[v]>dfn[u]){
int fx=find(v),fy=find(pa[v]);
if(fx!=fy){
ans--;
f[fx]=fy;
}
v=pa[v];
}
return ans ;
}
int main(){
int cnt = ;
while(scanf("%d%d",&n,&m)!=EOF){
if(n+m<=) break ;
cnt++;
init();
for(int i=;i<=m;i++){
int u,v;
scanf("%d%d",&u,&v);
adde(u,v);adde(v,u);
}
Tarjan(,-);
int q;
printf("Case %d:\n",cnt);
scanf("%d",&q);
while(q--){
int u,v;
scanf("%d%d",&u,&v);
printf("%d\n",lca(u,v));
}
}
return ;
}

POJ3694:Network(并查集+缩点+lca)的更多相关文章

  1. POJ 3694 Network(并查集缩点 + 朴素的LCA + 无向图求桥)题解

    题意:给你一个无向图,有q次操作,每次连接两个点,问你每次操作后有几个桥 思路:我们先用tarjan求出所有的桥,同时我们可以用并查集缩点,fa表示缩点后的编号,还要记录每个节点父节点pre.我们知道 ...

  2. 【并查集缩点+tarjan无向图求桥】Where are you @牛客练习赛32 D

    目录 [并查集缩点+tarjan无向图求桥]Where are you @牛客练习赛32 D PROBLEM SOLUTION CODE [并查集缩点+tarjan无向图求桥]Where are yo ...

  3. POJ 2236 Wireless Network (并查集)

    Wireless Network Time Limit: 10000MS   Memory Limit: 65536K Total Submissions: 18066   Accepted: 761 ...

  4. BestCoder冠军赛 - 1009 Exploration 【Tarjan+并查集缩点】

    [题意] 给一个图,这个图中既有有向边,又有无向边,每条边只能走一次,问图中是否存在环. 最多10^6个点,10^6个无向边,10^6个有向边 [题解] 因为既有有向边又有无向边,所以不能单纯的用ta ...

  5. [LA] 3027 - Corporative Network [并查集]

    A very big corporation is developing its corporative network. In the beginning each of the N enterpr ...

  6. LA 3027 Corporative Network 并查集记录点到根的距离

    Corporative Network Time Limit: 3000MS   Memory Limit: Unknown   64bit IO Format: %lld & %llu [S ...

  7. POJ2236 Wireless Network 并查集简单应用

    Description An earthquake takes place in Southeast Asia. The ACM (Asia Cooperated Medical team) have ...

  8. hdu1811 拓扑排序+并查集缩点

    /*给定两个点之间的三种关系 = < >如果是=就将两点放到同一个集合里进行缩点 离线处理所有关系,先用并查集将等于关系缩成一个点 */ #include<bits/stdc++.h ...

  9. Wireless Network 并查集

    An earthquake takes place in Southeast Asia. The ACM (Asia Cooperated Medical team) have set up a wi ...

随机推荐

  1. 【system.number】使用说明

    对象:system.number 说明:提供一系列针对数值类型的操作 目录: 方法 返回 说明 system.number.isNumber( number ) [True | False] 检测是否 ...

  2. JAVA基础学习之路(十)this关键字

    class Book { String name; int price; int num;//构造方法之间的互相调用解决了代码的重复问题,但是一定要留出口 public Book() { ,); } ...

  3. OpenMPI源码剖析3:try_kill_peers 和 ompi_rte_abort 函数

    接着上一篇的疑问,我们说道,会执行 try_kill_peers 函数,它的函数定义在 ompi_mpi_abort.c 下: // 这里注释也说到了,主要是杀死在同一个communicator的进程 ...

  4. some Commands OF CONSOLE

    不可避免地使用console,一旦与电脑打交道:入口就是help,而很多行就直接过掉了,却不能看到需要的地方,在那里停下来,实际是需要使用more  less grep等 在windows中,使用di ...

  5. ArcFaceDemo 第二版【C#】——视频人脸识别

    啥话不说,不用跪求,直接给下载地址:http://common.tenzont.com/comdll/arcface2demo.zip(话说附件的大小不限制,还是说我的文件太大,实际上确实有点大,60 ...

  6. Docker学习记录3: 搭建 Private Registry

    恩, Private Registry 特别好搭建, 只要依照官方文档, 很容易安装... https://docs.docker.com/registry/deploying/ 5000是个常用的端 ...

  7. 又见CLOSE_WAIT

    原文: http://mp.weixin.qq.com/s?__biz=MzI4MjA4ODU0Ng==&mid=402163560&idx=1&sn=5269044286ce ...

  8. android入门 — AlertDialog对话框

    常见的对话框主要分为消息提示对话框.确认对话框.列表对话框.单选对话框.多选对话框和自定义对话框. 对话框可以阻碍当前的UI线程,常用于退出确认等方面. 在这里主要的步骤可以总结为: 1.创建Aler ...

  9. Token安全

    token相对安全加密算法 http://blog.csdn.net/q8649912/article/details/52370565 关于文章的理解 1 sessionid 这个名词应该理解为:一 ...

  10. 移动端的picker参考vux

    参考vux移动端的ui组件,做了一个picker,测试在微信,uc主流浏览器能够正常工作.而在华为浏览器根本不能使用.而测试了vux的原有picker组件,发现在华为自带浏览器中,效果依然能够实现. ...