Network

Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 13172   Accepted: 4774

题目链接:http://poj.org/problem?id=3694

Description:

A network administrator manages a large network. The network consists of N computers and M links between pairs of computers. Any pair of computers are connected directly or indirectly by successive links, so data can be transformed between any two computers. The administrator finds that some links are vital to the network, because failure of any one of them can cause that data can't be transformed between some computers. He call such a link a bridge. He is planning to add some new links one by one to eliminate all bridges.

You are to help the administrator by reporting the number of bridges in the network after each new link is added.

Input:

The input consists of multiple test cases. Each test case starts with a line containing two integers N(1 ≤ N ≤ 100,000) and M(N - 1 ≤ M ≤ 200,000).
Each of the following M lines contains two integers A and B ( 1≤ A ≠ B ≤ N), which indicates a link between computer A and B. Computers are numbered from 1 to N. It is guaranteed that any two computers are connected in the initial network.
The next line contains a single integer Q ( 1 ≤ Q ≤ 1,000), which is the number of new links the administrator plans to add to the network one by one.
The i-th line of the following Q lines contains two integer A and B (1 ≤ A ≠ B ≤ N), which is the i-th added new link connecting computer A and B.

The last test case is followed by a line containing two zeros.

Output:

For each test case, print a line containing the test case number( beginning with 1) and Q lines, the i-th of which contains a integer indicating the number of bridges in the network after the first i new links are added. Print a blank line after the output for each test case.

Sample Input:

3 2
1 2
2 3
2
1 2
1 3
4 4
1 2
2 1
2 3
1 4
2
1 2
3 4
0 0

Sample Output:

Case 1:
1
0 Case 2:
2
0

题意:

首先给出一个无向图,然后不断加边,每次加一条边就输出当前图中桥有多少个。

题解:

首先单独计算桥很容易,但这个加边操作有点烦人,不可能每次加条边就求次桥吧。然后我们主要想的就是新边和原图的关系。

因为原图是连通的,在原图中,我们很容易把桥求出来,并且将相应的点进行缩点(这里我用的并查集),最后的图中的边都为桥,且无向图变成了树。

那么每次新加入一条边,如果它连接的为不在一个集合中的点,那么必然会影响到从u到v简单路径上面的桥;否则就不影响。

下面关键就是求这个简单路径,由于这个题数据量较小,用个朴素的lca就行了,这里的lca没有用深度来,而是根据dfn,很好地利用了时间戳。

代码如下:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <queue>
using namespace std;
typedef long long ll;
const int N = 1e5+,M = 2e5+;
int n,m,ans;
int head[N];
struct Edge{
int u,v,next;
}e[M<<];
int T,tot;
int dfn[N],low[N],cut[N],f[N],pa[N];
void adde(int u,int v){
e[tot].u=u;e[tot].v=v;e[tot].next=head[u];head[u]=tot++;
}
void init(){
T=;tot=;ans=;
memset(head,-,sizeof(head));
memset(cut,,sizeof(cut));
memset(dfn,,sizeof(dfn));
memset(pa,,sizeof(pa));
for(int i=;i<=n;i++) f[i]=i;
}
int find(int x){
return f[x]==x ? x : f[x]=find(f[x]);
}
void Union(int u,int v){
int fx=find(u),fy=find(v);
if(fx!=fy) f[fx]=fy;
return ;
}
void Tarjan(int u,int pre){
dfn[u]=low[u]=++T;
int son=;
for(int i=head[u];i!=-;i=e[i].next){
int v=e[i].v;
if(v==pre) continue ;
if(!dfn[v]){
pa[v]=u;
Tarjan(v,u);
low[u]=min(low[u],low[v]);
if(low[v]>dfn[u]){
cut[v]=;
ans++;
}else Union(u,v);
}else{
low[u]=min(low[u],dfn[v]);
}
}
}
int lca(int u,int v){
if(dfn[u]<dfn[v]) swap(u,v);
while(dfn[u]>dfn[v]){
int fx=find(u),fy=find(pa[u]);
if(fx!=fy){
ans--;
f[fx]=fy;
}
u=pa[u];
}
while(dfn[v]>dfn[u]){
int fx=find(v),fy=find(pa[v]);
if(fx!=fy){
ans--;
f[fx]=fy;
}
v=pa[v];
}
return ans ;
}
int main(){
int cnt = ;
while(scanf("%d%d",&n,&m)!=EOF){
if(n+m<=) break ;
cnt++;
init();
for(int i=;i<=m;i++){
int u,v;
scanf("%d%d",&u,&v);
adde(u,v);adde(v,u);
}
Tarjan(,-);
int q;
printf("Case %d:\n",cnt);
scanf("%d",&q);
while(q--){
int u,v;
scanf("%d%d",&u,&v);
printf("%d\n",lca(u,v));
}
}
return ;
}

POJ3694:Network(并查集+缩点+lca)的更多相关文章

  1. POJ 3694 Network(并查集缩点 + 朴素的LCA + 无向图求桥)题解

    题意:给你一个无向图,有q次操作,每次连接两个点,问你每次操作后有几个桥 思路:我们先用tarjan求出所有的桥,同时我们可以用并查集缩点,fa表示缩点后的编号,还要记录每个节点父节点pre.我们知道 ...

  2. 【并查集缩点+tarjan无向图求桥】Where are you @牛客练习赛32 D

    目录 [并查集缩点+tarjan无向图求桥]Where are you @牛客练习赛32 D PROBLEM SOLUTION CODE [并查集缩点+tarjan无向图求桥]Where are yo ...

  3. POJ 2236 Wireless Network (并查集)

    Wireless Network Time Limit: 10000MS   Memory Limit: 65536K Total Submissions: 18066   Accepted: 761 ...

  4. BestCoder冠军赛 - 1009 Exploration 【Tarjan+并查集缩点】

    [题意] 给一个图,这个图中既有有向边,又有无向边,每条边只能走一次,问图中是否存在环. 最多10^6个点,10^6个无向边,10^6个有向边 [题解] 因为既有有向边又有无向边,所以不能单纯的用ta ...

  5. [LA] 3027 - Corporative Network [并查集]

    A very big corporation is developing its corporative network. In the beginning each of the N enterpr ...

  6. LA 3027 Corporative Network 并查集记录点到根的距离

    Corporative Network Time Limit: 3000MS   Memory Limit: Unknown   64bit IO Format: %lld & %llu [S ...

  7. POJ2236 Wireless Network 并查集简单应用

    Description An earthquake takes place in Southeast Asia. The ACM (Asia Cooperated Medical team) have ...

  8. hdu1811 拓扑排序+并查集缩点

    /*给定两个点之间的三种关系 = < >如果是=就将两点放到同一个集合里进行缩点 离线处理所有关系,先用并查集将等于关系缩成一个点 */ #include<bits/stdc++.h ...

  9. Wireless Network 并查集

    An earthquake takes place in Southeast Asia. The ACM (Asia Cooperated Medical team) have set up a wi ...

随机推荐

  1. vim python自动补全插件:pydiction

    vim python自动补全插件:pydiction 可以实现下面python代码的自动补全: 1.简单python关键词补全 2.python 函数补全带括号 3.python 模块补全 4.pyt ...

  2. 零基础自学人工智能,看这些资料就够了(300G资料免费送)

    为什么有今天这篇? 首先,标题不要太相信,哈哈哈. 本公众号之前已经就人工智能学习的路径.学习方法.经典学习视频等做过完整说明.但是鉴于每个人的基础不同,可能需要额外的学习资料进行辅助.特此,向大家免 ...

  3. leetcode个人题解——#8 string to integer

    第八题 class Solution { public: int myAtoi(string str) { ; ; ; while(str[i] == ' ')i++; if (str[i] == ' ...

  4. php面试的那些“黑话”

    以下是一些常见的面试暗语,求职者一定要弄清楚其中蕴含的深意,不然可能“躺着也中枪”,最后只能铩羽而归. (1)请把简历先放在这,有消息我们会通知你的 面试官说出这句话,则表明他对你已经“兴趣不大”,为 ...

  5. 在JS中 实现不用中间变量temp 实现两个变量值得交换

    1.使用加减法; var a=1; var b=2; a=a+b; b=a-b; a=a-b; 2.使用乘除法(乘除法更像是加减法向乘除运算的映射) var a=1; var b=2; a = a * ...

  6. 数组的引用——用作形参&返回类型时

    一.数组的引用 切入:可以将一个变量定义成数组的引用(这个变量和数组的类型要相同) 形式: int odd[5] = {1, 3, 5, 7, 9}; int (&arr)[5] = odd; ...

  7. .getClass()和.class的区别

    一直在想.class和.getClass()的区别,思索良久,有点思绪,然后有网上搜了搜,找到了如下的一篇文章,与大家分享. 原来为就是涉及到java的反射----- Java反射学习 所谓反射,可以 ...

  8. lintcode-31-数组划分

    数组划分 给出一个整数数组 nums 和一个整数 k.划分数组(即移动数组 nums 中的元素),使得: 所有小于k的元素移到左边 所有大于等于k的元素移到右边 返回数组划分的位置,即数组中第一个位置 ...

  9. LintCode-165.合并两个排序链表

    合并两个排序链表 将两个排序链表合并为一个新的排序链表 样例 给出 1->3->8->11->15->null,2->null, 返回 1->2->3- ...

  10. iOS-加载html字符串

    NSMutableAttributedString * attrString =[[NSMutableAttributedString alloc] initWithData:[resultModel ...