redis conf 详解
# Redis configuration file example # Note on units: when memory size is needed, it is possible to specify
# it in the usual form of 1k 5GB 4M and so forth:
#
# 1k => 1000 bytes
# 1kb => 1024 bytes
# 1m => 1000000 bytes
# 1mb => 1024*1024 bytes
# 1g => 1000000000 bytes
# 1gb => 1024*1024*1024 bytes
#
# units are case insensitive so 1GB 1Gb 1gB are all the same. # Accept connections on the specified port, default is 6379.
# If port 0 is specified Redis will not listen on a TCP socket.
# 端口
port 6379 # If you want you can bind a single interface, if the bind option is not
# specified all the interfaces will listen for incoming connections.
#
# 绑定
# bind 127.0.0.1 # Specify the path for the unix socket that will be used to listen for
# incoming connections. There is no default, so Redis will not listen
# on a unix socket when not specified.
#
# unixsocket /tmp/redis.sock
# unixsocketperm 755 # Close the connection after a client is idle for N seconds (0 to disable)
# 超时时间
timeout 0 # TCP keepalive.
#
# If non-zero, use SO_KEEPALIVE to send TCP ACKs to clients in absence
# of communication. This is useful for two reasons:
#
# 1) Detect dead peers.
# 2) Take the connection alive from the point of view of network
# equipment in the middle.
#
# On Linux, the specified value (in seconds) is the period used to send ACKs.
# Note that to close the connection the double of the time is needed.
# On other kernels the period depends on the kernel configuration.
#
# A reasonable value for this option is 60 seconds.
tcp-keepalive 0 # Specify the server verbosity level.
# This can be one of:
# debug (a lot of information, useful for development/testing) 开发和测试
# verbose (many rarely useful info, but not a mess like the debug level) 比debug清爽
# notice (moderately verbose, what you want in production probably) 适合生产环境
# warning (only very important / critical messages are logged) 警告信息
# 日志级别
loglevel notice # Specify the log file name. Also 'stdout' can be used to force
# Redis to log on the standard output.
# 日志文件
logfile stdout # To enable logging to the Windows EventLog, just set 'syslog-enabled' to
# yes, and optionally update the other syslog parameters to suit your needs.
# If Redis is installed and launched as a Windows Service, this will
# automatically be enabled.
# 设置为yes会把日志输出到系统日志
# syslog-enabled no # Specify the source name of the events in the Windows Application log.
# 指定syslog的标示符,如果syslog-enabled 是no 则这个选项无效
# syslog-ident redis # Set the number of databases. The default database is DB 0, you can select
# a different one on a per-connection basis using SELECT <dbid> where
# dbid is a number between 0 and 'databases'-1
# 设置数据库数目
databases 16 ################################ SNAPSHOTTING #################################
#
# Save the DB on disk:
#
# save <seconds> <changes>
#
# Will save the DB if both the given number of seconds and the given
# number of write operations against the DB occurred.
#
# In the example below the behaviour will be to save:
# after 900 sec (15 min) if at least 1 key changed
# after 300 sec (5 min) if at least 10 keys changed
# after 60 sec if at least 10000 keys changed
#
# Note: you can disable saving at all commenting all the "save" lines.
#
# It is also possible to remove all the previously configured save
# points by adding a save directive with a single empty string argument
# like in the following example:
#
# save ""
# 硬盘保存数据
# 以下面的例子来说明:
# 过了900秒并且有1个key发生了改变 就会触发save动作
# 过了300秒并且有10个key发生了改变 就会触发save动作
# 过了60秒并且至少有10000个key发生了改变 也会触发save动作
save 900 1
save 300 10
save 60 10000 # By default Redis will stop accepting writes if RDB snapshots are enabled
# (at least one save point) and the latest background save failed.
# This will make the user aware (in an hard way) that data is not persisting
# on disk properly, otherwise chances are that no one will notice and some
# distater will happen.
#
# If the background saving process will start working again Redis will
# automatically allow writes again.
#
# However if you have setup your proper monitoring of the Redis server
# and persistence, you may want to disable this feature so that Redis will
# continue to work as usually even if there are problems with disk,
# permissions, and so forth.
stop-writes-on-bgsave-error yes # Compress string objects using LZF when dump .rdb databases?
# For default that's set to 'yes' as it's almost always a win.
# If you want to save some CPU in the saving child set it to 'no' but
# the dataset will likely be bigger if you have compressible values or keys.
# 是否压缩保存
rdbcompression yes # Since version 5 of RDB a CRC64 checksum is placed at the end of the file.
# This makes the format more resistant to corruption but there is a performance
# hit to pay (around 10%) when saving and loading RDB files, so you can disable it
# for maximum performances.
#
# RDB files created with checksum disabled have a checksum of zero that will
# tell the loading code to skip the check.
rdbchecksum yes # The filename where to dump the DB
# 保存dump数据的文件名
dbfilename dump.rdb # The working directory.
#
# The DB will be written inside this directory, with the filename specified
# above using the 'dbfilename' configuration directive.
#
# The Append Only File and the QFork memory mapped file will also be created
# inside this directory.
#
# Note that you must specify a directory here, not a file name.
# 工作目录
dir ./ ################################# REPLICATION ################################# # Master-Slave replication. Use slaveof to make a Redis instance a copy of
# another Redis server. Note that the configuration is local to the slave
# so for example it is possible to configure the slave to save the DB with a
# different interval, or to listen to another port, and so on.
# Master-Slave replication.
# 使用slaveof把一个 Redis 实例设置成为另一个Redis server的从库(热备). 注意: #配置只对当前slave有效。
# 因此可以把某个slave配置成使用不同的时间间隔来保存数据或者监听其他端口等等。
# slaveof <masterip> <masterport> # If the master is password protected (using the "requirepass" configuration
# directive below) it is possible to tell the slave to authenticate before
# starting the replication synchronization process, otherwise the master will
# refuse the slave request.
# 如果master有密码保护,则在slave与master进行数据同步之前需要进行密码校验,否则master会拒绝slave的请#求。
# masterauth <master-password> # When a slave loses its connection with the master, or when the replication
# is still in progress, the slave can act in two different ways:
#
# 1) if slave-serve-stale-data is set to 'yes' (the default) the slave will
# still reply to client requests, possibly with out of date data, or the
# data set may just be empty if this is the first synchronization.
#
# 2) if slave-serve-stale-data is set to 'no' the slave will reply with
# an error "SYNC with master in progress" to all the kind of commands
# but to INFO and SLAVEOF.
# 1) 如果 slave-serve-stale-data 设置成 'yes' (the default) slave会仍然响应客户端请求,此时可能会有问题。
#
# 2) 如果 slave-serve-stale data设置成 'no' slave会返回"SYNC with master in progress"这样的错误信息。 但 INFO 和SLAVEOF命令除外。
slave-serve-stale-data yes # You can configure a slave instance to accept writes or not. Writing against
# a slave instance may be useful to store some ephemeral data (because data
# written on a slave will be easily deleted after resync with the master) but
# may also cause problems if clients are writing to it because of a
# misconfiguration.
#
# Since Redis 2.6 by default slaves are read-only.
#
# Note: read only slaves are not designed to be exposed to untrusted clients
# on the internet. It's just a protection layer against misuse of the instance.
# Still a read only slave exports by default all the administrative commands
# such as CONFIG, DEBUG, and so forth. To a limited extend you can improve
# security of read only slaves using 'rename-command' to shadow all the
# administrative / dangerous commands.
# slave是否只读
slave-read-only yes # Slaves send PINGs to server in a predefined interval. It's possible to change
# this interval with the repl_ping_slave_period option. The default value is 10
# seconds.
#
# repl-ping-slave-period 10 # The following option sets a timeout for both Bulk transfer I/O timeout and
# master data or ping response timeout. The default value is 60 seconds.
#
# It is important to make sure that this value is greater than the value
# specified for repl-ping-slave-period otherwise a timeout will be detected
# every time there is low traffic between the master and the slave.
#
# repl-timeout 60 # Disable TCP_NODELAY on the slave socket after SYNC?
#
# If you select "yes" Redis will use a smaller number of TCP packets and
# less bandwidth to send data to slaves. But this can add a delay for
# the data to appear on the slave side, up to 40 milliseconds with
# Linux kernels using a default configuration.
#
# If you select "no" the delay for data to appear on the slave side will
# be reduced but more bandwidth will be used for replication.
#
# By default we optimize for low latency, but in very high traffic conditions
# or when the master and slaves are many hops away, turning this to "yes" may
# be a good idea.
repl-disable-tcp-nodelay no # The slave priority is an integer number published by Redis in the INFO output.
# It is used by Redis Sentinel in order to select a slave to promote into a
# master if the master is no longer working correctly.
#
# A slave with a low priority number is considered better for promotion, so
# for instance if there are three slaves with priority 10, 100, 25 Sentinel will
# pick the one wtih priority 10, that is the lowest.
#
# However a special priority of 0 marks the slave as not able to perform the
# role of master, so a slave with priority of 0 will never be selected by
# Redis Sentinel for promotion.
#
# By default the priority is 100.
slave-priority 100 ################################## SECURITY ################################### # Require clients to issue AUTH <PASSWORD> before processing any other
# commands. This might be useful in environments in which you do not trust
# others with access to the host running redis-server.
#
# This should stay commented out for backward compatibility and because most
# people do not need auth (e.g. they run their own servers).
#
# Warning: since Redis is pretty fast an outside user can try up to
# 150k passwords per second against a good box. This means that you should
# use a very strong password otherwise it will be very easy to break.
#
# requirepass foobared # Command renaming.
#
# It is possible to change the name of dangerous commands in a shared
# environment. For instance the CONFIG command may be renamed into something
# hard to guess so that it will still be available for internal-use tools
# but not available for general clients.
#
# Example:
#
# rename-command CONFIG b840fc02d524045429941cc15f59e41cb7be6c52
#
# It is also possible to completely kill a command by renaming it into
# an empty string:
#
# rename-command CONFIG ""
#
# Please note that changing the name of commands that are logged into the
# AOF file or transmitted to slaves may cause problems. ################################### LIMITS #################################### # Set the max number of connected clients at the same time. By default
# this limit is set to 10000 clients, however if the Redis server is not
# able to configure the process file limit to allow for the specified limit
# the max number of allowed clients is set to the current file limit
# minus 32 (as Redis reserves a few file descriptors for internal uses).
#
# Once the limit is reached Redis will close all the new connections sending
# an error 'max number of clients reached'.
# 最大客户端数量
# maxclients 10000 # The Linux version of Redis relies on the system call fork() to perform
# point-in-time snapshots of the heap. In addition to the AOF and RDB backup
# mechanism, the master-slave synchronization and clustering features are
# dependent on this behavior of fork(). In order for the Windows version to
# perform like the Linux version we had to simulate this aspect of fork().
# Doing so meant moving the Redis heap into a memory mapped file that can
# be shared with a child process.
#
# *** There must be disk space available for this file in order for Redis
# to launch. *** The default configuration places this file in the local
# appdata directory. If you wish to move this file to another local disk,
# use the heapdir flag as described below.
#
# The maxheap flag controls the maximum size of this memory mapped file,
# as well as the total usable space for the Redis heap. Running Redis
# without either maxheap or maxmemory will result in a memory mapped file
# being created that is equal to the size of physical memory. During
# fork() operations the total page file commit will max out at around:
#
# (size of physical memory) + (2 * size of maxheap)
#
# For instance, on a machine with 8GB of physical RAM, the max page file
# commit with the default maxheap size will be (8)+(2*8) GB , or 24GB. The
# default page file sizing of Windows will allow for this without having
# to reconfigure the system. Larger heap sizes are possible, but the maximum
# page file size will have to be increased accordingly.
#
# The Redis heap must be larger than the value specified by the maxmemory
# flag, as the heap allocator has its own memory requirements and
# fragmentation of the heap is inevitable. If only the maxmemory flag is
# specified, maxheap will be set at 1.5*maxmemory. If the maxheap flag is
# specified along with maxmemory, the maxheap flag will be automatically
# increased if it is smaller than 1.5*maxmemory.
#
# maxheap <bytes>
maxheap 1024000000 # The heap memory mapped file must reside on a local path for heap sharing
# between processes to work. A UNC path will not suffice here. For maximum
# performance this should be located on the fastest local drive available.
# This value defaults to the local application data folder(e.g.,
# "%USERPROFILE%\AppData\Local"). Since this file can be very large, you
# may wish to place this on a drive other than the one the operating system
# is installed on.
#
# Note that you must specify a directory here, not a file name.
# heapdir <directory path(absolute or relative)> # If Redis is to be used as an in-memory-only cache without any kind of
# persistence, then the fork() mechanism used by the background AOF/RDB
# persistence is unneccessary. As an optimization, all persistence can be
# turned off in the Windows version of Redis. This will disable the creation of
# the memory mapped heap file, redirect heap allocations to the system heap
# allocator, and disable commands that would otherwise cause fork() operations:
# BGSAVE and BGREWRITEAOF. This flag may not be combined with any of the other
# flags that configure AOF and RDB operations.
# persistence-available [(yes)|no] # Don't use more memory than the specified amount of bytes.
# When the memory limit is reached Redis will try to remove keys
# accordingly to the eviction policy selected (see maxmemmory-policy).
#
# If Redis can't remove keys according to the policy, or if the policy is
# set to 'noeviction', Redis will start to reply with errors to commands
# that would use more memory, like SET, LPUSH, and so on, and will continue
# to reply to read-only commands like GET.
#
# This option is usually useful when using Redis as an LRU cache, or to set
# an hard memory limit for an instance (using the 'noeviction' policy).
#
# WARNING: If you have slaves attached to an instance with maxmemory on,
# the size of the output buffers needed to feed the slaves are subtracted
# from the used memory count, so that network problems / resyncs will
# not trigger a loop where keys are evicted, and in turn the output
# buffer of slaves is full with DELs of keys evicted triggering the deletion
# of more keys, and so forth until the database is completely emptied.
#
# In short... if you have slaves attached it is suggested that you set a lower
# limit for maxmemory so that there is some free RAM on the system for slave
# output buffers (but this is not needed if the policy is 'noeviction').
# 最大可用内存,
# maxmemory <bytes> # MAXMEMORY POLICY: how Redis will select what to remove when maxmemory
# is reached. You can select among five behaviors:
#
# volatile-lru -> remove the key with an expire set using an LRU algorithm
# allkeys-lru -> remove any key accordingly to the LRU algorithm
# volatile-random -> remove a random key with an expire set
# allkeys-random -> remove a random key, any key
# volatile-ttl -> remove the key with the nearest expire time (minor TTL)
# noeviction -> don't expire at all, just return an error on write operations
#
# Note: with any of the above policies, Redis will return an error on write
# operations, when there are not suitable keys for eviction.
#
# At the date of writing this commands are: set setnx setex append
# incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd
# sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby
# zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby
# getset mset msetnx exec sort
#
# The default is:
#内存清理策略:如果达到了maxmemory,你可以采取如下动作:
#
# volatile-lru -> 使用LRU算法来删除过期的set
# allkeys-lru -> 删除任何遵循LRU算法的key
# volatile-random ->随机地删除过期set中的key
# allkeys->random -> 随机地删除一个key
# volatile-ttl -> 删除最近即将过期的key(the nearest expire time (minor TTL))
# noeviction -> 根本不过期,写操作直接报错
# maxmemory-policy volatile-lru # LRU and minimal TTL algorithms are not precise algorithms but approximated
# algorithms (in order to save memory), so you can select as well the sample
# size to check. For instance for default Redis will check three keys and
# pick the one that was used less recently, you can change the sample size
# using the following configuration directive.
# 默认样本数
# maxmemory-samples 3 ############################## APPEND ONLY MODE ############################### # By default Redis asynchronously dumps the dataset on disk. This mode is
# good enough in many applications, but an issue with the Redis process or
# a power outage may result into a few minutes of writes lost (depending on
# the configured save points).
#
# The Append Only File is an alternative persistence mode that provides
# much better durability. For instance using the default data fsync policy
# (see later in the config file) Redis can lose just one second of writes in a
# dramatic event like a server power outage, or a single write if something
# wrong with the Redis process itself happens, but the operating system is
# still running correctly.
#
# AOF and RDB persistence can be enabled at the same time without problems.
# If the AOF is enabled on startup Redis will load the AOF, that is the file
# with the better durability guarantees.
#
# Please check http://redis.io/topics/persistence for more information.
# no:异步保存数据到硬盘
appendonly no # The name of the append only file (default: "appendonly.aof")
# 文件名
# appendfilename appendonly.aof # The fsync() call tells the Operating System to actually write data on disk
# instead to wait for more data in the output buffer. Some OS will really flush
# data on disk, some other OS will just try to do it ASAP.
#
# Redis supports three different modes:
#
# no: don't fsync, just let the OS flush the data when it wants. Faster.
# always: fsync after every write to the append only log . Slow, Safest.
# everysec: fsync only one time every second. Compromise.
#
# The default is "everysec", as that's usually the right compromise between
# speed and data safety. It's up to you to understand if you can relax this to
# "no" that will let the operating system flush the output buffer when
# it wants, for better performances (but if you can live with the idea of
# some data loss consider the default persistence mode that's snapshotting),
# or on the contrary, use "always" that's very slow but a bit safer than
# everysec.
#
# More details please check the following article:
# http://antirez.com/post/redis-persistence-demystified.html
#
# If unsure, use "everysec".
# no:不fsync, 只是通知OS可以flush数据了,具体是否flush取决于OS.性能更好.
# always: 每次写入append only 日志文件后都会fsync . 性能差,但很安全.
# everysec: 每间隔1秒进行一次fsync. 折中
# appendfsync always
appendfsync everysec
# appendfsync no # When the AOF fsync policy is set to always or everysec, and a background
# saving process (a background save or AOF log background rewriting) is
# performing a lot of I/O against the disk, in some Linux configurations
# Redis may block too long on the fsync() call. Note that there is no fix for
# this currently, as even performing fsync in a different thread will block
# our synchronous write(2) call.
#
# In order to mitigate this problem it's possible to use the following option
# that will prevent fsync() from being called in the main process while a
# BGSAVE or BGREWRITEAOF is in progress.
#
# This means that while another child is saving, the durability of Redis is
# the same as "appendfsync none". In practical terms, this means that it is
# possible to lose up to 30 seconds of log in the worst scenario (with the
# default Linux settings).
#
# If you have latency problems turn this to "yes". Otherwise leave it as
# "no" that is the safest pick from the point of view of durability.
no-appendfsync-on-rewrite no # Automatic rewrite of the append only file.
# Redis is able to automatically rewrite the log file implicitly calling
# BGREWRITEAOF when the AOF log size grows by the specified percentage.
#
# This is how it works: Redis remembers the size of the AOF file after the
# latest rewrite (if no rewrite has happened since the restart, the size of
# the AOF at startup is used).
#
# This base size is compared to the current size. If the current size is
# bigger than the specified percentage, the rewrite is triggered. Also
# you need to specify a minimal size for the AOF file to be rewritten, this
# is useful to avoid rewriting the AOF file even if the percentage increase
# is reached but it is still pretty small.
#
# Specify a percentage of zero in order to disable the automatic AOF
# rewrite feature.
# appendonly 文件的自动重写
auto-aof-rewrite-percentage 100
auto-aof-rewrite-min-size 64mb ################################ LUA SCRIPTING ############################### # Max execution time of a Lua script in milliseconds.
#
# If the maximum execution time is reached Redis will log that a script is
# still in execution after the maximum allowed time and will start to
# reply to queries with an error.
#
# When a long running script exceed the maximum execution time only the
# SCRIPT KILL and SHUTDOWN NOSAVE commands are available. The first can be
# used to stop a script that did not yet called write commands. The second
# is the only way to shut down the server in the case a write commands was
# already issue by the script but the user don't want to wait for the natural
# termination of the script.
#
# Set it to 0 or a negative value for unlimited execution without warnings.
lua-time-limit 5000 ################################## SLOW LOG ###################################
# 慢查询
# The Redis Slow Log is a system to log queries that exceeded a specified
# execution time. The execution time does not include the I/O operations
# like talking with the client, sending the reply and so forth,
# but just the time needed to actually execute the command (this is the only
# stage of command execution where the thread is blocked and can not serve
# other requests in the meantime).
#
# You can configure the slow log with two parameters: one tells Redis
# what is the execution time, in microseconds, to exceed in order for the
# command to get logged, and the other parameter is the length of the
# slow log. When a new command is logged the oldest one is removed from the
# queue of logged commands. # The following time is expressed in microseconds, so 1000000 is equivalent
# to one second. Note that a negative number disables the slow log, while
# a value of zero forces the logging of every command.
# 慢查询阀值
slowlog-log-slower-than 10000 # There is no limit to this length. Just be aware that it will consume memory.
# You can reclaim memory used by the slow log with SLOWLOG RESET.
# 慢查询的长度 相当于一个队列
slowlog-max-len 128 ############################### ADVANCED CONFIG ###############################
# 虚拟内存
# Hashes are encoded using a memory efficient data structure when they have a
# small number of entries, and the biggest entry does not exceed a given
# threshold. These thresholds can be configured using the following directives.
hash-max-ziplist-entries 512
hash-max-ziplist-value 64 # Similarly to hashes, small lists are also encoded in a special way in order
# to save a lot of space. The special representation is only used when
# you are under the following limits:
list-max-ziplist-entries 512
list-max-ziplist-value 64 # Sets have a special encoding in just one case: when a set is composed
# of just strings that happens to be integers in radix 10 in the range
# of 64 bit signed integers.
# The following configuration setting sets the limit in the size of the
# set in order to use this special memory saving encoding.
set-max-intset-entries 512 # Similarly to hashes and lists, sorted sets are also specially encoded in
# order to save a lot of space. This encoding is only used when the length and
# elements of a sorted set are below the following limits:
zset-max-ziplist-entries 128
zset-max-ziplist-value 64 # Active rehashing uses 1 millisecond every 100 milliseconds of CPU time in
# order to help rehashing the main Redis hash table (the one mapping top-level
# keys to values). The hash table implementation Redis uses (see dict.c)
# performs a lazy rehashing: the more operation you run into an hash table
# that is rehashing, the more rehashing "steps" are performed, so if the
# server is idle the rehashing is never complete and some more memory is used
# by the hash table.
#
# The default is to use this millisecond 10 times every second in order to
# active rehashing the main dictionaries, freeing memory when possible.
#
# If unsure:
# use "activerehashing no" if you have hard latency requirements and it is
# not a good thing in your environment that Redis can reply form time to time
# to queries with 2 milliseconds delay.
#
# use "activerehashing yes" if you don't have such hard requirements but
# want to free memory asap when possible.
activerehashing yes # The client output buffer limits can be used to force disconnection of clients
# that are not reading data from the server fast enough for some reason (a
# common reason is that a Pub/Sub client can't consume messages as fast as the
# publisher can produce them).
#
# The limit can be set differently for the three different classes of clients:
#
# normal -> normal clients
# slave -> slave clients and MONITOR clients
# pubsub -> clients subcribed to at least one pubsub channel or pattern
#
# The syntax of every client-output-buffer-limit directive is the following:
#
# client-output-buffer-limit <class> <hard limit> <soft limit> <soft seconds>
#
# A client is immediately disconnected once the hard limit is reached, or if
# the soft limit is reached and remains reached for the specified number of
# seconds (continuously).
# So for instance if the hard limit is 32 megabytes and the soft limit is
# 16 megabytes / 10 seconds, the client will get disconnected immediately
# if the size of the output buffers reach 32 megabytes, but will also get
# disconnected if the client reaches 16 megabytes and continuously overcomes
# the limit for 10 seconds.
#
# By default normal clients are not limited because they don't receive data
# without asking (in a push way), but just after a request, so only
# asynchronous clients may create a scenario where data is requested faster
# than it can read.
#
# Instead there is a default limit for pubsub and slave clients, since
# subscribers and slaves receive data in a push fashion.
#
# Both the hard or the soft limit can be disabled by setting them to zero.
client-output-buffer-limit normal 0 0 0
client-output-buffer-limit slave 256mb 64mb 60
client-output-buffer-limit pubsub 32mb 8mb 60 # Redis calls an internal function to perform many background tasks, like
# closing connections of clients in timeot, purging expired keys that are
# never requested, and so forth.
#
# Not all tasks are perforemd with the same frequency, but Redis checks for
# tasks to perform accordingly to the specified "hz" value.
#
# By default "hz" is set to 10. Raising the value will use more CPU when
# Redis is idle, but at the same time will make Redis more responsive when
# there are many keys expiring at the same time, and timeouts may be
# handled with more precision.
#
# The range is between 1 and 500, however a value over 100 is usually not
# a good idea. Most users should use the default of 10 and raise this up to
# 100 only in environments where very low latency is required.
hz 10 # When a child rewrites the AOF file, if the following option is enabled
# the file will be fsync-ed every 32 MB of data generated. This is useful
# in order to commit the file to the disk more incrementally and avoid
# big latency spikes.
aof-rewrite-incremental-fsync yes ################################## INCLUDES ################################### # Include one or more other config files here. This is useful if you
# have a standard template that goes to all Redis server but also need
# to customize a few per-server settings. Include files can include
# other files, so use this wisely.
#
# include /path/to/local.conf
# include /path/to/other.conf
redis conf 详解的更多相关文章
- Redis:默认配置文件redis.conf详解
转: Redis:默认配置文件redis.conf详解 # Redis配置文件样例 # Note on units: when memory size is needed, it is possibl ...
- Redis配置文件redis.conf详解
一.Redis配置文件redis.conf详解 # Note on units: when memory size is needed, it is possible to specifiy # it ...
- linux离线部署redis及redis.conf详解
一.离线部署redis 由于博主部署的虚拟机没有网络也没有gcc编译器,所以就寻找具备gcc编译器的编译环境把redis编译安装好,Copy Redis安装目录文件夹到目标虚拟机的目录下.copy时r ...
- redis-5.0.3 redis.conf详解
# Redis configuration file example. # # Note that in order to read the configuration file, Redis mus ...
- Redis的配置文件redis.conf详解
Redis的配置文件位于redis的安装目录下,一般不要直接操作出厂设置的配置文件,需要对其进行备份.# Redis的配置文件样例: # Redis configuration file exampl ...
- redis.conf详解
# Redis示例配置文件 # 注意单位问题:当需要设置内存大小的时候,可以使用类似1k.5GB.4M这样的常见格式: # # 1k => bytes # 1kb => bytes # 1 ...
- redis的默认配置文件redis.conf详解
# redis 配置文件示例 # 当你需要为某个配置项指定内存大小的时候,必须要带上单位, # 通常的格式就是 1k 5gb 4m 等酱紫: # # 1k => 1000 bytes # 1kb ...
- redis配置详解
##redis配置详解 # Redis configuration file example. # # Note that in order to read the configuration fil ...
- CentOS7/RHEL7安装Redis步骤详解
CentOS7/RHEL7安装Redis步骤详解 CentOS7/RHEL7安装Redis还是头一次测试安装了,因为centos7升级之后与centos6有比较大的区别了,下面我们就一起来看看Cent ...
随机推荐
- PHP“Cannot use object of type stdClass as array”
php再调用json_decode从字符串对象生成json对象时,如果使用[]操作符取数据,会得到下面的错误 错误:Cannot use object of type stdClass as arra ...
- javascript实现原生ajax
自从javascript有了各种框架之后,比如jquery,使用ajax已经变的相当简单了.但有时候为了追求简洁,可能项目中不需要加载jquery这种庞大的js插件.但又要使用到ajax这种功能该如何 ...
- NHibernate 之持久化类、拦截器 (第二篇)
一.持久化类中成员标量的要求 作为被NHibernate使用的持久化类,必须满足以下几点要求: 1.声明读写属性 在NHibernate的使用中,持久化类的成员变量必须声明对应的属性,NHiberna ...
- Web API使用记录系列(一)创建API项目与基本配置
本系列文章主要记录Web API使用过程中的一些个人总结,包括创建API项目.基础配置.ApiTestClient使用与HelpPage页面的优化.Owin与OAuth的使用等. 本节主要内容是API ...
- mac 安装 composer
使用 curl 指令下载: curl -sS https://getcomposer.org/installer | php 或是沒有安裝 curl ,也可以用 php 指令下载: php -r &q ...
- static_cast ,reinterpret_cast
用法:static_cast < type-id > ( expression ) 该运算符把expression转换为type-id类型,但没有运行时类型检查来保证转换的安全性.它主要有 ...
- 如何使用SQLMAP绕过WAF
WAF(web应用防火墙)逐渐成为安全解决方案的标配之一.正因为有了它,许多公司甚至已经不在意web应用的漏洞.遗憾的是,并不是所有的waf都是不可绕过的!本文将向大家讲述,如何使用注入神器SQLMa ...
- Oracle判断两个时间段是否相交
SQL中常常要判断两个时间段是否相交,该如何判断呢?比如两个时间段(S1,E1)和(S2,E2).我最先想到的是下面的方法一.方法一:(S1 BETWEEN S2 AND E2) OR (S2 BET ...
- 解决 java.lang.ClassNotFoundException配置文件出错的问题
出现的原因: 1.jar包没有导入 2.jar包有冲突 3.jar包没有同步发布到自己项目的lib目录中 解决方案: maven构建工程的方式:项目点击右键 点击 Properties 选择Deplo ...
- Android技术——在Android中的随意视图中找控件
1.在非常多情况下,我们可能不知道控件的id,可是我们却希望在包括这个控件的视图中找到它,能够採用例如以下做法: 例:在Activity的根视图中找出当中全部的Button控件 private voi ...