• 线性模型

    • 逻辑回归--逻辑损失(logistic loss)
    • 线性支持向量机(Support Vector Machine, SVM)--合页损失(hinge loss)
  • 朴素贝叶斯(Naive Bayes)
  • 决策树

0 准备数据

kaggle2.blob.core.windows.net/competitions-data/kaggle/3526/train.tsv

sed 1d train.tsv > train_noheader.tsv

0 运行环境

cd /Users/erichan/Garden/spark-1.5.1-bin-cdh4

bin/spark-shell --name my_mlib --packages org.jblas:jblas:1.2.4-SNAPSHOT --driver-memory 4G --executor-memory 4G --driver-cores 2

import org.apache.spark.mllib.feature._
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics
import org.apache.spark.mllib.linalg.distributed.RowMatrix
import org.apache.spark.rdd.RDD
import org.apache.spark.mllib.optimization._
import org.apache.spark.mllib.classification._
import org.apache.spark.mllib.evaluation._
import org.apache.spark.mllib.classification._
import org.apache.spark.mllib.tree.DecisionTree
import org.apache.spark.mllib.tree.configuration.Algo
import org.apache.spark.mllib.tree.impurity._

1 提取特征

val PATH = "/Users/erichan/sourcecode/book/Spark机器学习"
val rawData = sc.textFile(PATH+"/train_noheader.tsv")
val records = rawData.map(line => line.split("\t"))
records.first

Array[String] = Array("http://www.bloomberg.com/news/2010-12-23/ibm-predicts-holographic-calls-air-breathing-batteries-by-2015.html", "4042", "{""title"":""IBM Sees Holographic Calls Air Breathing Batteries ibm sees holographic calls, air-breathing batteries"",""body"":""A sign stands outside the International Business Machines Corp IBM Almaden Research Center campus in San Jose California Photographer Tony Avelar Bloomberg Buildings stand at the International Business Machines Corp IBM Almaden Research Center campus in the Santa Teresa Hills of San Jose California Photographer Tony Avelar Bloomberg By 2015 your mobile phone will project a 3 D image of anyone who calls and your laptop will be powered by kinetic energy At least that s what International Business Machines Corp sees ...

val data = records.map { r =>
val trimmed = r.map(_.replaceAll("\"", ""))
val label = trimmed(r.size - 1).toInt
val features = trimmed.slice(4, r.size - 1).map(d => if (d == "?") 0.0 else d.toDouble)
LabeledPoint(label, Vectors.dense(features))
}
data.cache
val numData = data.count

numData: Long = 7395

// note that some of our data contains negative feature vaues. For naive Bayes we convert these to zeros
val nbData = records.map { r =>
val trimmed = r.map(_.replaceAll("\"", ""))
val label = trimmed(r.size - 1).toInt
val features = trimmed.slice(4, r.size - 1).map(d => if (d == "?") 0.0 else d.toDouble).map(d => if (d < 0) 0.0 else d)
LabeledPoint(label, Vectors.dense(features))
}

2 训练分类模型

2.1 逻辑回归模型

// train a Logistic Regression model
val numIterations = 10
val maxTreeDepth = 5
val lrModel = LogisticRegressionWithSGD.train(data, numIterations)

2.2 SVM模型

val svmModel = SVMWithSGD.train(data, numIterations)

2.3 朴素贝叶斯

val nbModel = NaiveBayes.train(nbData)

2.4 决策树

val dtModel = DecisionTree.train(data, Algo.Classification, Entropy, maxTreeDepth)

3 使用分类模型

3.1 预测

以逻辑回归模型为例

val dataPoint = data.first
val prediction = lrModel.predict(dataPoint.features)

prediction: Double = 1.0

val trueLabel = dataPoint.label

trueLabel: Double = 0.0

val predictions = lrModel.predict(data.map(lp => lp.features))
predictions.take(5)

Array[Double] = Array(1.0, 1.0, 1.0, 1.0, 1.0)

4 评估性能

4.1 逻辑回归模型的正确率

val lrTotalCorrect = data.map { point =>
if (lrModel.predict(point.features) == point.label) 1 else 0
}.sum
val lrAccuracy = lrTotalCorrect / numData

lrAccuracy: Double = 0.5146720757268425

4.2 SVM模型的正确率

val svmTotalCorrect = data.map { point =>
if (svmModel.predict(point.features) == point.label) 1 else 0
}.sum
val svmAccuracy = svmTotalCorrect / numData

svmAccuracy: Double = 0.5146720757268425

4.3 朴素贝叶斯的正确率

val nbTotalCorrect = nbData.map { point =>
if (nbModel.predict(point.features) == point.label) 1 else 0
}.sum
val nbAccuracy = nbTotalCorrect / numData

nbAccuracy: Double = 0.5803921568627451

4.4 决策树的正确率

// decision tree threshold needs to be specified
val dtTotalCorrect = data.map { point =>
val score = dtModel.predict(point.features)
val predicted = if (score > 0.5) 1 else 0
if (predicted == point.label) 1 else 0
}.sum
val dtAccuracy = dtTotalCorrect / numData

dtAccuracy: Double = 0.6482758620689655

4.5 ROC曲线和AUC

val metrics = Seq(lrModel, svmModel).map { model =>
val scoreAndLabels = data.map { point =>
(model.predict(point.features), point.label)
}
val metrics = new BinaryClassificationMetrics(scoreAndLabels)
(model.getClass.getSimpleName, metrics.areaUnderPR, metrics.areaUnderROC)
}
val nbMetrics = Seq(nbModel).map{ model =>
val scoreAndLabels = nbData.map { point =>
val score = model.predict(point.features)
(if (score > 0.5) 1.0 else 0.0, point.label)
}
val metrics = new BinaryClassificationMetrics(scoreAndLabels)
(model.getClass.getSimpleName, metrics.areaUnderPR, metrics.areaUnderROC)
}
val dtMetrics = Seq(dtModel).map{ model =>
val scoreAndLabels = data.map { point =>
val score = model.predict(point.features)
(if (score > 0.5) 1.0 else 0.0, point.label)
}
val metrics = new BinaryClassificationMetrics(scoreAndLabels)
(model.getClass.getSimpleName, metrics.areaUnderPR, metrics.areaUnderROC)
}
val allMetrics = metrics ++ nbMetrics ++ dtMetrics
allMetrics.foreach{ case (m, pr, roc) =>
println(f"$m, Area under PR: ${pr * 100.0}%2.4f%%, Area under ROC: ${roc * 100.0}%2.4f%%")
}

LogisticRegressionModel, Area under PR: 75.6759%, Area under ROC: 50.1418%
SVMModel, Area under PR: 75.6759%, Area under ROC: 50.1418%
NaiveBayesModel, Area under PR: 68.0851%, Area under ROC: 58.3559%
DecisionTreeModel, Area under PR: 74.3081%, Area under ROC: 64.8837%

5 改进和调优

5.1 特征标准化

val vectors = data.map(lp => lp.features)
val matrix = new RowMatrix(vectors)
val matrixSummary = matrix.computeColumnSummaryStatistics() println(matrixSummary.mean)
println(matrixSummary.min)
println(matrixSummary.max)
println(matrixSummary.variance)
println(matrixSummary.numNonzeros)

[0.4122580529952672,2.761823191986608,0.4682304732861389,0.21407992638350232,0.09206236071899916,0.04926216043908053,2.255103452212041,-0.10375042752143335,0.0,0.05642274498417851,0.02123056118999324,0.23377817665490194,0.2757090373659236,0.615551048005409,0.6603110209601082,30.07707910750513,0.03975659229208925,5716.598242055447,178.75456389452353,4.960649087221096,0.17286405047031742,0.10122079189276552]

[0.0,0.0,0.0,0.0,0.0,0.0,0.0,-1.0,0.0,0.0,0.0,0.045564223,-1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0]

[0.999426,363.0,1.0,1.0,0.980392157,0.980392157,21.0,0.25,0.0,0.444444444,1.0,0.716883117,113.3333333,1.0,1.0,100.0,1.0,207952.0,4997.0,22.0,1.0,1.0]

[0.10974244167559001,74.30082476809639,0.04126316989120241,0.02153343633200108,0.009211817450882448,0.005274933469767946,32.53918714591821,0.09396988697611545,0.0,0.0017177410346628928,0.020782634824610638,0.0027548394224293036,3.683788919674426,0.2366799607085986,0.22433071201674218,415.8785589543846,0.03818116876739597,7.877330081138463E7,32208.116247426184,10.45300904576431,0.03359363403832393,0.006277532884214705]

[5053.0,7354.0,7172.0,6821.0,6160.0,5128.0,7350.0,1257.0,0.0,7362.0,157.0,7395.0,7355.0,4552.0,4883.0,7347.0,294.0,7378.0,7395.0,6782.0,6868.0,7235.0]

val scaler = new StandardScaler(withMean = true, withStd = true).fit(vectors)
val scaledData = data.map(lp => LabeledPoint(lp.label, scaler.transform(lp.features))) println(data.first.features)
println(scaledData.first.features)
println((0.789131 - 0.41225805299526636)/math.sqrt(0.1097424416755897))

[0.789131,2.055555556,0.676470588,0.205882353,0.047058824,0.023529412,0.443783175,0.0,0.0,0.09077381,0.0,0.245831182,0.003883495,1.0,1.0,24.0,0.0,5424.0,170.0,8.0,0.152941176,0.079129575]

[1.137647336497678,-0.08193557169294771,1.0251398128933331,-0.05586356442541689,-0.4688932531289357,-0.3543053263079386,-0.3175352172363148,0.3384507982396541,0.0,0.828822173315322,-0.14726894334628504,0.22963982357813484,-0.14162596909880876,0.7902380499177364,0.7171947294529865,-0.29799681649642257,-0.2034625779299476,-0.03296720969690391,-0.04878112975579913,0.9400699751165439,-0.10869848852526258,-0.2788207823137022]

1.137647336497682

使用标准化重新训练

val lrModelScaled = LogisticRegressionWithSGD.train(scaledData, numIterations)
val lrTotalCorrectScaled = scaledData.map { point =>
if (lrModelScaled.predict(point.features) == point.label) 1 else 0
}.sum
val lrAccuracyScaled = lrTotalCorrectScaled / numData
// lrAccuracyScaled: Double = 0.6204192021636241
val lrPredictionsVsTrue = scaledData.map { point =>
(lrModelScaled.predict(point.features), point.label)
}
val lrMetricsScaled = new BinaryClassificationMetrics(lrPredictionsVsTrue)
val lrPr = lrMetricsScaled.areaUnderPR
val lrRoc = lrMetricsScaled.areaUnderROC println(f"${lrModelScaled.getClass.getSimpleName}\nAccuracy: ${lrAccuracyScaled * 100}%2.4f%%\nArea under PR: ${lrPr * 100.0}%2.4f%%\nArea under ROC: ${lrRoc * 100.0}%2.4f%%")

LogisticRegressionModel
Accuracy: 62.0419%
Area under PR: 72.7254%
Area under ROC: 61.9663%

5.2 其他特征

val categories = records.map(r => r(3)).distinct.collect.zipWithIndex.toMap
val numCategories = categories.size
val dataCategories = records.map { r =>
val trimmed = r.map(_.replaceAll("\"", ""))
val label = trimmed(r.size - 1).toInt
val categoryIdx = categories(r(3))
val categoryFeatures = Array.ofDim[Double](numCategories)
categoryFeatures(categoryIdx) = 1.0
val otherFeatures = trimmed.slice(4, r.size - 1).map(d => if (d == "?") 0.0 else d.toDouble)
val features = categoryFeatures ++ otherFeatures
LabeledPoint(label, Vectors.dense(features))
} println(dataCategories.first)

(0.0,[0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.789131,2.055555556,0.676470588,0.205882353,0.047058824,0.023529412,0.443783175,0.0,0.0,0.09077381,0.0,0.245831182,0.003883495,1.0,1.0,24.0,0.0,5424.0,170.0,8.0,0.152941176,0.079129575])

标准化转换

// standardize the feature vectors
val scalerCats = new StandardScaler(withMean = true, withStd = true).fit(dataCategories.map(lp => lp.features))
val scaledDataCats = dataCategories.map(lp => LabeledPoint(lp.label, scalerCats.transform(lp.features))) println(dataCategories.first.features)
println(scaledDataCats.first.features)

[0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.789131,2.055555556,0.676470588,0.205882353,0.047058824,0.023529412,0.443783175,0.0,0.0,0.09077381,0.0,0.245831182,0.003883495,1.0,1.0,24.0,0.0,5424.0,170.0,8.0,0.152941176,0.079129575]

[-0.02326210589837061,2.7207366564548514,-0.4464212047941535,-0.22052688457880879,-0.028494000387023734,-0.2709990696925828,-0.23272797709480803,-0.2016540523193296,-0.09914991930875496,-0.38181322324318134,-0.06487757239262681,-0.6807527904251456,-0.20418221057887365,-0.10189469097220732,1.137647336497678,-0.08193557169294771,1.0251398128933331,-0.05586356442541689,-0.4688932531289357,-0.3543053263079386,-0.3175352172363148,0.3384507982396541,0.0,0.828822173315322,-0.14726894334628504,0.22963982357813484,-0.14162596909880876,0.7902380499177364,0.7171947294529865,-0.29799681649642257,-0.2034625779299476,-0.03296720969690391,-0.04878112975579913,0.9400699751165439,-0.10869848852526258,-0.2788207823137022]

使用扩展后的特征训练逻辑回归模型

val lrModelScaledCats = LogisticRegressionWithSGD.train(scaledDataCats, numIterations)
val lrTotalCorrectScaledCats = scaledDataCats.map { point =>
if (lrModelScaledCats.predict(point.features) == point.label) 1 else 0
}.sum
val lrAccuracyScaledCats = lrTotalCorrectScaledCats / numData
val lrPredictionsVsTrueCats = scaledDataCats.map { point =>
(lrModelScaledCats.predict(point.features), point.label)
}
val lrMetricsScaledCats = new BinaryClassificationMetrics(lrPredictionsVsTrueCats)
val lrPrCats = lrMetricsScaledCats.areaUnderPR
val lrRocCats = lrMetricsScaledCats.areaUnderROC println(f"${lrModelScaledCats.getClass.getSimpleName}\nAccuracy: ${lrAccuracyScaledCats * 100}%2.4f%%\nArea under PR: ${lrPrCats * 100.0}%2.4f%%\nArea under ROC: ${lrRocCats * 100.0}%2.4f%%")

LogisticRegressionModel
Accuracy: 66.5720%
Area under PR: 75.7964%
Area under ROC: 66.5483%

5.3 使用正确的数据格式

使用1-of-k便民店类型特征构建数据集

val dataNB = records.map { r =>
val trimmed = r.map(_.replaceAll("\"", ""))
val label = trimmed(r.size - 1).toInt
val categoryIdx = categories(r(3))
val categoryFeatures = Array.ofDim[Double](numCategories)
categoryFeatures(categoryIdx) = 1.0
LabeledPoint(label, Vectors.dense(categoryFeatures))
}

重新训练贝叶斯模型,并评估性能

val nbModelCats = NaiveBayes.train(dataNB)
val nbTotalCorrectCats = dataNB.map { point =>
if (nbModelCats.predict(point.features) == point.label) 1 else 0
}.sum
val nbAccuracyCats = nbTotalCorrectCats / numData
val nbPredictionsVsTrueCats = dataNB.map { point =>
(nbModelCats.predict(point.features), point.label)
}
val nbMetricsCats = new BinaryClassificationMetrics(nbPredictionsVsTrueCats)
val nbPrCats = nbMetricsCats.areaUnderPR
val nbRocCats = nbMetricsCats.areaUnderROC println(f"${nbModelCats.getClass.getSimpleName}\nAccuracy: ${nbAccuracyCats * 100}%2.4f%%\nArea under PR: ${nbPrCats * 100.0}%2.4f%%\nArea under ROC: ${nbRocCats * 100.0}%2.4f%%")

NaiveBayesModel
Accuracy: 60.9601%
Area under PR: 74.0522%
Area under ROC: 60.5138%

5.4 模型参数调优

5.4.1 线性模型

基础优化技术:随机梯度下降(SGD)

辅助函数:根据输入,训练模型

// helper function to train a logistic regresson model
def trainWithParams(input: RDD[LabeledPoint], regParam: Double, numIterations: Int, updater: Updater, stepSize: Double) = {
val lr = new LogisticRegressionWithSGD
lr.optimizer.setNumIterations(numIterations).setUpdater(updater).setRegParam(regParam).setStepSize(stepSize)
lr.run(input)
}

辅助函数:根据输入数据和分类模型,计算AUC

// helper function to create AUC metric
def createMetrics(label: String, data: RDD[LabeledPoint], model: ClassificationModel) = {
val scoreAndLabels = data.map { point =>
(model.predict(point.features), point.label)
}
val metrics = new BinaryClassificationMetrics(scoreAndLabels)
(label, metrics.areaUnderROC)
}

迭代次数调优

// cache the data to increase speed of multiple runs agains the dataset
scaledDataCats.cache // num iterations
val iterResults = Seq(1, 5, 10, 50).map { param =>
val model = trainWithParams(scaledDataCats, 0.0, param, new SimpleUpdater, 1.0)
createMetrics(s"$param iterations", scaledDataCats, model)
}
iterResults.foreach { case (param, auc) => println(f"$param, AUC = ${auc * 100}%2.2f%%") }

1 iterations, AUC = 64.97%
5 iterations, AUC = 66.62%
10 iterations, AUC = 66.55%
50 iterations, AUC = 66.81%

步长调优

// step size
val numIterations = 10
val stepResults = Seq(0.001, 0.01, 0.1, 1.0, 10.0).map { param =>
val model = trainWithParams(scaledDataCats, 0.0, numIterations, new SimpleUpdater, param)
createMetrics(s"$param step size", scaledDataCats, model)
}
stepResults.foreach { case (param, auc) => println(f"$param, AUC = ${auc * 100}%2.2f%%") }

0.001 step size, AUC = 64.95%
0.01 step size, AUC = 65.00%
0.1 step size, AUC = 65.52%
1.0 step size, AUC = 66.55%
10.0 step size, AUC = 61.92%

使用SquaredL2Updater研究正则化参数

// regularization
val regResults = Seq(0.001, 0.01, 0.1, 1.0, 10.0).map { param =>
val model = trainWithParams(scaledDataCats, param, numIterations, new SquaredL2Updater, 1.0)
createMetrics(s"$param L2 regularization parameter", scaledDataCats, model)
}
regResults.foreach { case (param, auc) => println(f"$param, AUC = ${auc * 100}%2.2f%%") }

0.001 L2 regularization parameter, AUC = 66.55%
0.01 L2 regularization parameter, AUC = 66.55%
0.1 L2 regularization parameter, AUC = 66.63%
1.0 L2 regularization parameter, AUC = 66.04%
10.0 L2 regularization parameter, AUC = 35.33%

5.4.2 决策树

辅助函数:接收树的深度和不纯度

// investigate decision tree
def trainDTWithParams(input: RDD[LabeledPoint], maxDepth: Int, impurity: Impurity) = {
DecisionTree.train(input, Algo.Classification, impurity, maxDepth)
}

使用Entropy不纯度

// investigate tree depth impact for Entropy impurity
val dtResultsEntropy = Seq(1, 2, 3, 4, 5, 10, 20).map { param =>
val model = trainDTWithParams(data, param, Entropy)
val scoreAndLabels = data.map { point =>
val score = model.predict(point.features)
(if (score > 0.5) 1.0 else 0.0, point.label)
}
val metrics = new BinaryClassificationMetrics(scoreAndLabels)
(s"$param tree depth", metrics.areaUnderROC)
}
dtResultsEntropy.foreach { case (param, auc) => println(f"$param, AUC = ${auc * 100}%2.2f%%") }

1 tree depth, AUC = 59.33%
2 tree depth, AUC = 61.68%
3 tree depth, AUC = 62.61%
4 tree depth, AUC = 63.63%
5 tree depth, AUC = 64.88%
10 tree depth, AUC = 76.26%
20 tree depth, AUC = 98.45%

使用Gini不纯度

// investigate tree depth impact for Gini impurity
val dtResultsGini = Seq(1, 2, 3, 4, 5, 10, 20).map { param =>
val model = trainDTWithParams(data, param, Gini)
val scoreAndLabels = data.map { point =>
val score = model.predict(point.features)
(if (score > 0.5) 1.0 else 0.0, point.label)
}
val metrics = new BinaryClassificationMetrics(scoreAndLabels)
(s"$param tree depth", metrics.areaUnderROC)
}
dtResultsGini.foreach { case (param, auc) => println(f"$param, AUC = ${auc * 100}%2.2f%%") }

1 tree depth, AUC = 59.33%
2 tree depth, AUC = 61.68%
3 tree depth, AUC = 62.61%
4 tree depth, AUC = 63.63%
5 tree depth, AUC = 64.89%
10 tree depth, AUC = 78.37%
20 tree depth, AUC = 98.87%

5.4.3 朴素贝叶斯

辅助函数:接收lamda参数

// investigate Naive Bayes parameters
def trainNBWithParams(input: RDD[LabeledPoint], lambda: Double) = {
val nb = new NaiveBayes
nb.setLambda(lambda)
nb.run(input)
}
val nbResults = Seq(0.001, 0.01, 0.1, 1.0, 10.0).map { param =>
val model = trainNBWithParams(dataNB, param)
val scoreAndLabels = dataNB.map { point =>
(model.predict(point.features), point.label)
}
val metrics = new BinaryClassificationMetrics(scoreAndLabels)
(s"$param lambda", metrics.areaUnderROC)
}
nbResults.foreach { case (param, auc) => println(f"$param, AUC = ${auc * 100}%2.2f%%") }

0.001 lambda, AUC = 60.51%
0.01 lambda, AUC = 60.51%
0.1 lambda, AUC = 60.51%
1.0 lambda, AUC = 60.51%
10.0 lambda, AUC = 60.51%

5.4.4 交叉验证

划分训练集和测试集

// illustrate cross-validation
// create a 60% / 40% train/test data split
val trainTestSplit = scaledDataCats.randomSplit(Array(0.6, 0.4), 123)
val train = trainTestSplit(0)
val test = trainTestSplit(1)

测试集的模型性能

val regResultsTest = Seq(0.0, 0.001, 0.0025, 0.005, 0.01).map { param =>
val model = trainWithParams(train, param, numIterations, new SquaredL2Updater, 1.0)
createMetrics(s"$param L2 regularization parameter", test, model)
}
regResultsTest.foreach { case (param, auc) => println(f"$param, AUC = ${auc * 100}%2.6f%%") }

0.0 L2 regularization parameter, AUC = 66.480874%
0.001 L2 regularization parameter, AUC = 66.480874%
0.0025 L2 regularization parameter, AUC = 66.515027%
0.005 L2 regularization parameter, AUC = 66.515027%
0.01 L2 regularization parameter, AUC = 66.549180%

训练集的模型性能

// training set results
val regResultsTrain = Seq(0.0, 0.001, 0.0025, 0.005, 0.01).map { param =>
val model = trainWithParams(train, param, numIterations, new SquaredL2Updater, 1.0)
createMetrics(s"$param L2 regularization parameter", train, model)
}
regResultsTrain.foreach { case (param, auc) => println(f"$param, AUC = ${auc * 100}%2.6f%%") }

0.0 L2 regularization parameter, AUC = 66.260311%
0.001 L2 regularization parameter, AUC = 66.260311%
0.0025 L2 regularization parameter, AUC = 66.260311%
0.005 L2 regularization parameter, AUC = 66.238294%
0.01 L2 regularization parameter, AUC = 66.238294%

Spark机器学习4·分类模型(spark-shell)的更多相关文章

  1. Spark机器学习5·回归模型(pyspark)

    分类模型的预测目标是:类别编号 回归模型的预测目标是:实数变量 回归模型种类 线性模型 最小二乘回归模型 应用L2正则化时--岭回归(ridge regression) 应用L1正则化时--LASSO ...

  2. Spark机器学习7·降维模型(scala&python)

    PCA(主成分分析法,Principal Components Analysis) SVD(奇异值分解法,Singular Value Decomposition) http://vis-www.cs ...

  3. Spark机器学习6·聚类模型(spark-shell)

    K-均值(K-mean)聚类 目的:最小化所有类簇中的方差之和 类簇内方差和(WCSS,within cluster sum of squared errors) fuzzy K-means 层次聚类 ...

  4. 客户流失?来看看大厂如何基于spark+机器学习构建千万数据规模上的用户留存模型 ⛵

    作者:韩信子@ShowMeAI 大数据技术 ◉ 技能提升系列:https://www.showmeai.tech/tutorials/84 行业名企应用系列:https://www.showmeai. ...

  5. Spark学习笔记——构建分类模型

    Spark中常见的三种分类模型:线性模型.决策树和朴素贝叶斯模型. 线性模型,简单而且相对容易扩展到非常大的数据集:线性模型又可以分成:1.逻辑回归:2.线性支持向量机 决策树是一个强大的非线性技术, ...

  6. 掌握Spark机器学习库-09.3-kmeans算法实现分类

     数据集 iris.data 数据集概览 代码 package org.apache.spark.examples.hust.hml.examplesforml import org.apache.s ...

  7. 掌握Spark机器学习库-08.7-决策树算法实现分类

    数据集 iris.data 数据集概览 代码 package org.apache.spark.examples.examplesforml import org.apache.spark.Spark ...

  8. 【Spark机器学习速成宝典】模型篇08支持向量机【SVM】(Python版)

    目录 什么是支持向量机(SVM) 线性可分数据集的分类 线性可分数据集的分类(对偶形式) 线性近似可分数据集的分类 线性近似可分数据集的分类(对偶形式) 非线性数据集的分类 SMO算法 合页损失函数 ...

  9. 基于Apache Spark机器学习的客户流失预测

    流失预测是个重要的业务,通过预测哪些客户可能取消对服务的订阅来最大限度地减少客户流失.虽然最初在电信行业使用,但它已经成为银行,互联网服务提供商,保险公司和其他垂直行业的通用业务. 预测过程是大规模数 ...

随机推荐

  1. 第7步:安装Grid

    7.1解压文件 注意,安装Grid时需要以grid用户身份执行,在那之前需要以root身份执行xhost+,即命令: 代码1 [root@sgdb1~]# xhost+ [root@sgdb1~]# ...

  2. asp.net页面触发事件panel滚动条高度不变的实现方法

    asp.net页面按钮点击触发事件后panel滚动条非自动回到顶端,每次都要往下拉一下,关于这个问题的解决方法如下 此文是为解决asp.net页面按钮点击触发事件后panel滚动条非自动回到顶端的解决 ...

  3. 浅析Java与C#的事件处理机制

    http://www.cnblogs.com/OOAbooke/archive/2012/02/18/2356899.html

  4. django组件整合

    session Django中默认支持Session,其内部提供了5种类型的Session供开发者使用: 数据库(默认) 缓存 文件 缓存+数据库 加密cookie Django默认支持Session ...

  5. django用户认证系统——注册3

    用户注册就是创建用户对象,将用户的个人信息保存到数据库里.回顾一下 Django 的 MVT 经典开发流程,对用户注册功能来说,首先创建用户模型(M),这一步我们已经完成了.编写注册视图函数(V),并 ...

  6. sql查询某个字段最长的记录

    select `字段`, length(`字段`) from 表名 where length(`字段`) = ( select max(length(`字段`)) from 表名  )

  7. Eclipse修改背景颜色

    windows->peferences->General->Editors->Text EditorAppearance color options:选择Background ...

  8. django 之 常用命令

    Django 基本命令 本节主要是为了让您了解一些django最基本的命令,请尝试着记住它们,并且多多练习下 1. 新建一个 django project django-admin.py startp ...

  9. Linux下的Make与Makefile

    原文转载自:http://www.cpplive.com/html/1776.html 另外一个不错的博客http://bbs.chinaunix.net/thread-1950588-1-1.htm ...

  10. Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem

    题目链接:传送门 题目大意:给你n个区间,求任意k个区间交所包含点的数目之和. 题目思路:将n个区间都离散化掉,然后对于一个覆盖的区间,如果覆盖数cnt>=k,则数目应该加上 区间长度*(cnt ...