[poj2528]Mayor's posters
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 66154   Accepted: 19104

Description

The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:

  • Every candidate can place exactly one poster on the wall.
  • All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
  • The wall is divided into segments and the width of each segment is one byte.
  • Each poster must completely cover a contiguous number of wall segments.

They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections. 
Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall. 

Input

The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers li and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri.

Output

For each input data set print the number of visible posters after all the posters are placed.

The picture below illustrates the case of the sample input. 

Sample Input

1
5
1 4
2 6
8 10
3 4
7 10

Sample Output

4

Source

 
题目大意:T组测试数据,每组测试数据有N张海报,按次序贴在板子上,我们可以将其抽象为一条直线,每张海报占据的区域[L,R],问最后可以贴几张海报。
试题分析:标记每个区间是否只有一种颜色,如果是的话访问这个区间时看它的颜色编号有没有被算进答案。更新时注意下传标记。
       POJ上的数据比较水,建议去试一试discuss中的数据,蛮良心的找出普通离散化的错误……
       比如说
1
3
1 3
6 10
1 10 //正确输出:3
//错误输出:2
//问题原因:离散化成了[1,2] [3,4] [1,4],这样确实只剩下2了

      如何解决?在两两之差>1时(区域不会被完全覆盖),就可以在这里插入一个节点以标记这里有一个区间要算。

代码:

#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<stack>
#include<algorithm>
using namespace std; inline int read(){
int x=0,f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
const int MAXN=200001;
const int INF=999999;
int N,M;
int T;
int A[MAXN*2],a[MAXN*2],b[MAXN*2];
int tr[MAXN*8+100];
int cnt,tmp3;
bool flag[MAXN*8+100];
bool Hash[MAXN*8+100];
int tmp; void tage_lazy(int rt,int l,int r){
if(flag[rt]){
flag[rt*2]=flag[rt*2+1]=true;
tr[rt*2]=tr[rt*2+1]=tr[rt];
flag[rt]=false;
}
return ;
}
void add(int l,int r,int rt,int L,int R){
if(L<=l&&R>=r){
tr[rt]=cnt;
flag[rt]=true;
return ;
}
tage_lazy(rt,l,r);
int mid=(l+r)>>1;
if(mid<R) add(mid+1,r,rt*2+1,L,R);
if(mid>=L) add(l,mid,rt*2,L,R);
return ;
}
int Que(int l,int r,int rt,int L,int R){
if(flag[rt]){
if(!Hash[tr[rt]]){
Hash[tr[rt]]=true;
return 1;
}
else return 0;
}
if(l==r) return 0;
int mid=(l+r)>>1;
return Que(l,mid,rt*2,L,R)+Que(mid+1,r,rt*2+1,L,R);
} int main(){
T=read();
while(T--){
memset(tr,0,sizeof(tr));
memset(flag,false,sizeof(flag));
memset(Hash,false,sizeof(Hash));
N=read();tmp=tmp3=0;
for(int i=1;i<=N;i++){
++tmp;A[tmp]=a[tmp]=read();
++tmp;A[tmp]=a[tmp]=read();
}
sort(a+1,a+tmp+1);
int tmp2=0;int treef=tmp;
for(int i=1;i<=tmp;i++)
if(a[i]==a[i-1]) treef--;
else b[++tmp3]=a[i];
int k=tmp3;
for(int i=1;i<=k;i++)
if(b[i]>b[i-1]+1) b[++tmp3]=b[i-1]+1;
sort(b+1,b+tmp3+1);
treef=tmp3;
for(int i=1;i<=N;i++){
++cnt;
int l=lower_bound(b+1,b+tmp3+1,A[tmp2+1])-b;
int r=lower_bound(b+1,b+tmp3+1,A[tmp2+2])-b;
add(1,treef,1,l,r);
tmp2+=2;
}
printf("%d\n",Que(1,treef,1,1,treef));
}
}

【线段树】Mayor's posters的更多相关文章

  1. 线段树 Mayor's posters

    甚至DFS也能过吧 Mayor's posters POJ - 2528 The citizens of Bytetown, AB, could not stand that the candidat ...

  2. POJ 2528 Mayor's posters(线段树+离散化)

    Mayor's posters 转载自:http://blog.csdn.net/winddreams/article/details/38443761 [题目链接]Mayor's posters [ ...

  3. poj 2528 Mayor's posters(线段树+离散化)

    /* poj 2528 Mayor's posters 线段树 + 离散化 离散化的理解: 给你一系列的正整数, 例如 1, 4 , 100, 1000000000, 如果利用线段树求解的话,很明显 ...

  4. Mayor's posters(线段树+离散化POJ2528)

    Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 51175 Accepted: 14820 Des ...

  5. poj-----(2528)Mayor's posters(线段树区间更新及区间统计+离散化)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 43507   Accepted: 12693 ...

  6. 【POJ】2528 Mayor's posters ——离散化+线段树

    Mayor's posters Time Limit: 1000MS    Memory Limit: 65536K   Description The citizens of Bytetown, A ...

  7. Mayor's posters(离散化线段树)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 54067   Accepted: 15713 ...

  8. poj 2528 Mayor's posters 线段树+离散化技巧

    poj 2528 Mayor's posters 题目链接: http://poj.org/problem?id=2528 思路: 线段树+离散化技巧(这里的离散化需要注意一下啊,题目数据弱看不出来) ...

  9. POJ 2528 Mayor's posters (线段树+离散化)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:75394   Accepted: 21747 ...

  10. Mayor's posters POJ - 2528(线段树 + 离散化)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 74745   Accepted: 21574 ...

随机推荐

  1. java springmvc4 图片或文件上传

    1.文件配置 配置文件解析 上传文件处理的核心方法 // uploadOneFile.jsp, uploadMultiFile.jsp submit to. @RequestMapping(value ...

  2. 20、redis和memcached比较?

    1.Redis和Memcache都是将数据存放在内存中,都是内存数据库.不过memcache还可用于缓存其他东西,例如图片.视频等等: 2.Redis不仅仅支持简单的k/v类型的数据,同时还提供lis ...

  3. for in、each; for 、forEach、map

    1.jQuery.each(object, [callback]) 用于例遍任何对象.回调函数拥有两个参数:第一个为对象的成员或数组的索引,第二个为对应变量或内容.如果需要退出 each 循环可使回调 ...

  4. 实战手工注入某站,mssql注入

    昨天就搞下来的,但是是工具搞得,为了比赛还是抛弃一阵子的工具吧.内容相对简单,可掠过. 报错得到sql语句: DataSet ds2 = BusinessLibrary.classHelper.Get ...

  5. 树莓派开启smb

    1.安装smb apt-get install samba samba-common-bin 2.修改/etc/samba/smb.conf配置 设置使用系统用户登入 增加smb访问文件夹 [shar ...

  6. Django【设计】settings方案

      配置文件: 目标:配置文件,默认配置和手动配置分开,参考django的配置文件方案,默认配置文件放在内部,只让用户做常用配置   /bin/settings.py(手动配置) PLUGIN_ITE ...

  7. fork与vfork区别

    1. 地址空间各段拷贝: fork: 内核为子进程生成新的地址空间结构,拷贝父进程的代码段,数据空间,堆,栈到自身的地址空间,但注意:子进程的代码段并不会分配物理空间,而是指向父进程的代码段物理空间, ...

  8. WA时查错点

    这篇文章旨在总结可能出错的原因,想到时随时会补充. 查看调试输出语句是否删除 查看数组是否清零 查看是否使用long long 查看是否有的常量应开LL(如1LL << (32) ) 查看 ...

  9. 部署HBase系统(分布式部署)

    1.简介 HBase系统主要依赖于zookeeper和hdfs系统,所以部署HBase需要先去部署zookeeper和hadoop 2.部署开始 IP或者HOSTNAME需要根据自身主机信息设定. 部 ...

  10. django渲染模板时跟vue使用的{{ }}冲突解决方法

    var vm = new Vue({ el: '#app', // 分割符: 修改vue中显示数据的语法, 防止与django冲突 delimiters: ['[[', ']]'], data: { ...