一.基于TensorFlow的softmax回归模型解决手写字母识别问题

详细步骤如下:

1.加载MNIST数据: input_data.read_data_sets('MNIST_data',one_hot=true)

2.运行TensorFlow的InterractiveSession: sess = tf.InteractiveSession()

3.构建Softmax回归模型: 占位符tf.placeholder 变量tf.Variable 类别预测与损失函数 tf.nn.softmax  tf.refuce_sum 训练模型 tf.train.GradientDescentOptimizer 评估模型

结果:在测试集上有91%正确率

二.构建多层卷积网络

详细步骤如下:

1.权重初始化函数

2.卷积和池化函数

3.第一层卷积

4.第二层卷积

5.密集连接层

6.输出层

7.训练和评估模型

代码:(DeepMnist.py)

 from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True) import tensorflow as tf
sess = tf.InteractiveSession() x = tf.placeholder(tf.float32, shape=[None, 784])
y_ = tf.placeholder(tf.float32, shape=[None, 10]) w = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10])) sess.run(tf.global_variables_initializer()) y = tf.matmul(x ,w) + b cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels = y_, logits=y)) train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) for _ in range(1000):
batch = mnist.train.next_batch(100)
train_step.run(feed_dict={x:batch[0],y_:batch[1]}) correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) print(accuracy.eval(feed_dict={x:mnist.test.images,y_:mnist.test.labels})) def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial) def bias_variable(shape):
initial = tf.constant(0.1,shape=shape)
return tf.Variable(initial) def conv2d(x,w):
return tf.nn.conv2d(x,w,strides=[1,1,1,1],padding='SAME') def max_pool_2x2(x):
return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME') w_conv1 = weight_variable([5,5,1,32])
b_conv1 = bias_variable([32]) x_image = tf.reshape(x, [-1,28,28,1]) h_conv1 = tf.nn.relu(conv2d(x_image, w_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1) w_conv2 = weight_variable([5,5,32,64])
b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, w_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2) w_fc1 = weight_variable([7*7*64,1024])
b_fc1 =bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1,7*7*64])
h_fc1 =tf.nn.relu(tf.matmul(h_pool2_flat,w_fc1) + b_fc1) keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10]) y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2 cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
sess.run(tf.global_variables_initializer())
for i in range(1000):
batch = mnist.train.next_batch(50)
if i%100 == 0:
train_accuracy = accuracy.eval(feed_dict={
x:batch[0], y_: batch[1], keep_prob: 1.0})
print("step %d, training accuracy %g"%(i, train_accuracy))
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) print("test accuracy %g"%accuracy.eval(feed_dict={
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

输出:

训练1000次,测试准确率96.34%;20000次准确率达到99%以上;

三.简易前馈神经网络

代码如下:

 # Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================== """Builds the MNIST network.
Implements the inference/loss/training pattern for model building.
1. inference() - Builds the model as far as is required for running the network
forward to make predictions.
2. loss() - Adds to the inference model the layers required to generate loss.
3. training() - Adds to the loss model the Ops required to generate and
apply gradients.
This file is used by the various "fully_connected_*.py" files and not meant to
be run.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function import math import tensorflow as tf # The MNIST dataset has 10 classes, representing the digits 0 through 9.
NUM_CLASSES = 10 # The MNIST images are always 28x28 pixels.
IMAGE_SIZE = 28
IMAGE_PIXELS = IMAGE_SIZE * IMAGE_SIZE def inference(images, hidden1_units, hidden2_units):
"""Build the MNIST model up to where it may be used for inference.
Args:
images: Images placeholder, from inputs().
hidden1_units: Size of the first hidden layer.
hidden2_units: Size of the second hidden layer.
Returns:
softmax_linear: Output tensor with the computed logits.
"""
# Hidden 1
with tf.name_scope('hidden1'):
weights = tf.Variable(
tf.truncated_normal([IMAGE_PIXELS, hidden1_units],
stddev=1.0 / math.sqrt(float(IMAGE_PIXELS))),
name='weights')
biases = tf.Variable(tf.zeros([hidden1_units]),
name='biases')
hidden1 = tf.nn.relu(tf.matmul(images, weights) + biases)
# Hidden 2
with tf.name_scope('hidden2'):
weights = tf.Variable(
tf.truncated_normal([hidden1_units, hidden2_units],
stddev=1.0 / math.sqrt(float(hidden1_units))),
name='weights')
biases = tf.Variable(tf.zeros([hidden2_units]),
name='biases')
hidden2 = tf.nn.relu(tf.matmul(hidden1, weights) + biases)
# Linear
with tf.name_scope('softmax_linear'):
weights = tf.Variable(
tf.truncated_normal([hidden2_units, NUM_CLASSES],
stddev=1.0 / math.sqrt(float(hidden2_units))),
name='weights')
biases = tf.Variable(tf.zeros([NUM_CLASSES]),
name='biases')
logits = tf.matmul(hidden2, weights) + biases
return logits def loss(logits, labels):
"""Calculates the loss from the logits and the labels.
Args:
logits: Logits tensor, float - [batch_size, NUM_CLASSES].
labels: Labels tensor, int32 - [batch_size].
Returns:
loss: Loss tensor of type float.
"""
labels = tf.to_int64(labels)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels, logits=logits, name='xentropy')
return tf.reduce_mean(cross_entropy, name='xentropy_mean') def training(loss, learning_rate):
"""Sets up the training Ops.
Creates a summarizer to track the loss over time in TensorBoard.
Creates an optimizer and applies the gradients to all trainable variables.
The Op returned by this function is what must be passed to the
`sess.run()` call to cause the model to train.
Args:
loss: Loss tensor, from loss().
learning_rate: The learning rate to use for gradient descent.
Returns:
train_op: The Op for training.
"""
# Add a scalar summary for the snapshot loss.
tf.summary.scalar('loss', loss)
# Create the gradient descent optimizer with the given learning rate.
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
# Create a variable to track the global step.
global_step = tf.Variable(0, name='global_step', trainable=False)
# Use the optimizer to apply the gradients that minimize the loss
# (and also increment the global step counter) as a single training step.
train_op = optimizer.minimize(loss, global_step=global_step)
return train_op def evaluation(logits, labels):
"""Evaluate the quality of the logits at predicting the label.
Args:
logits: Logits tensor, float - [batch_size, NUM_CLASSES].
labels: Labels tensor, int32 - [batch_size], with values in the
range [0, NUM_CLASSES).
Returns:
A scalar int32 tensor with the number of examples (out of batch_size)
that were predicted correctly.
"""
# For a classifier model, we can use the in_top_k Op.
# It returns a bool tensor with shape [batch_size] that is true for
# the examples where the label is in the top k (here k=1)
# of all logits for that example.
correct = tf.nn.in_top_k(logits, labels, 1)
# Return the number of true entries.
return tf.reduce_sum(tf.cast(correct, tf.int32))

mnist.py

 # Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================== """Trains and Evaluates the MNIST network using a feed dictionary."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function # pylint: disable=missing-docstring
import argparse
import os.path
import sys
import time from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.examples.tutorials.mnist import mnist # Basic model parameters as external flags.
FLAGS = None def placeholder_inputs(batch_size):
"""Generate placeholder variables to represent the input tensors.
These placeholders are used as inputs by the rest of the model building
code and will be fed from the downloaded data in the .run() loop, below.
Args:
batch_size: The batch size will be baked into both placeholders.
Returns:
images_placeholder: Images placeholder.
labels_placeholder: Labels placeholder.
"""
# Note that the shapes of the placeholders match the shapes of the full
# image and label tensors, except the first dimension is now batch_size
# rather than the full size of the train or test data sets.
images_placeholder = tf.placeholder(tf.float32, shape=(batch_size,
mnist.IMAGE_PIXELS))
labels_placeholder = tf.placeholder(tf.int32, shape=(batch_size))
return images_placeholder, labels_placeholder def fill_feed_dict(data_set, images_pl, labels_pl):
"""Fills the feed_dict for training the given step.
A feed_dict takes the form of:
feed_dict = {
<placeholder>: <tensor of values to be passed for placeholder>,
....
}
Args:
data_set: The set of images and labels, from input_data.read_data_sets()
images_pl: The images placeholder, from placeholder_inputs().
labels_pl: The labels placeholder, from placeholder_inputs().
Returns:
feed_dict: The feed dictionary mapping from placeholders to values.
"""
# Create the feed_dict for the placeholders filled with the next
# `batch size` examples.
images_feed, labels_feed = data_set.next_batch(FLAGS.batch_size,
FLAGS.fake_data)
feed_dict = {
images_pl: images_feed,
labels_pl: labels_feed,
}
return feed_dict def do_eval(sess,
eval_correct,
images_placeholder,
labels_placeholder,
data_set):
"""Runs one evaluation against the full epoch of data.
Args:
sess: The session in which the model has been trained.
eval_correct: The Tensor that returns the number of correct predictions.
images_placeholder: The images placeholder.
labels_placeholder: The labels placeholder.
data_set: The set of images and labels to evaluate, from
input_data.read_data_sets().
"""
# And run one epoch of eval.
true_count = 0 # Counts the number of correct predictions.
steps_per_epoch = data_set.num_examples // FLAGS.batch_size
num_examples = steps_per_epoch * FLAGS.batch_size
for step in xrange(steps_per_epoch):
feed_dict = fill_feed_dict(data_set,
images_placeholder,
labels_placeholder)
true_count += sess.run(eval_correct, feed_dict=feed_dict)
precision = float(true_count) / num_examples
print(' Num examples: %d Num correct: %d Precision @ 1: %0.04f' %
(num_examples, true_count, precision)) def run_training():
"""Train MNIST for a number of steps."""
# Get the sets of images and labels for training, validation, and
# test on MNIST.
data_sets = input_data.read_data_sets(FLAGS.input_data_dir, FLAGS.fake_data) # Tell TensorFlow that the model will be built into the default Graph.
with tf.Graph().as_default():
# Generate placeholders for the images and labels.
images_placeholder, labels_placeholder = placeholder_inputs(
FLAGS.batch_size) # Build a Graph that computes predictions from the inference model.
logits = mnist.inference(images_placeholder,
FLAGS.hidden1,
FLAGS.hidden2) # Add to the Graph the Ops for loss calculation.
loss = mnist.loss(logits, labels_placeholder) # Add to the Graph the Ops that calculate and apply gradients.
train_op = mnist.training(loss, FLAGS.learning_rate) # Add the Op to compare the logits to the labels during evaluation.
eval_correct = mnist.evaluation(logits, labels_placeholder) # Build the summary Tensor based on the TF collection of Summaries.
summary = tf.summary.merge_all() # Add the variable initializer Op.
init = tf.global_variables_initializer() # Create a saver for writing training checkpoints.
saver = tf.train.Saver() # Create a session for running Ops on the Graph.
sess = tf.Session() # Instantiate a SummaryWriter to output summaries and the Graph.
summary_writer = tf.summary.FileWriter(FLAGS.log_dir, sess.graph) # And then after everything is built: # Run the Op to initialize the variables.
sess.run(init) # Start the training loop.
for step in xrange(FLAGS.max_steps):
start_time = time.time() # Fill a feed dictionary with the actual set of images and labels
# for this particular training step.
feed_dict = fill_feed_dict(data_sets.train,
images_placeholder,
labels_placeholder) # Run one step of the model. The return values are the activations
# from the `train_op` (which is discarded) and the `loss` Op. To
# inspect the values of your Ops or variables, you may include them
# in the list passed to sess.run() and the value tensors will be
# returned in the tuple from the call.
_, loss_value = sess.run([train_op, loss],
feed_dict=feed_dict) duration = time.time() - start_time # Write the summaries and print an overview fairly often.
if step % 100 == 0:
# Print status to stdout.
print('Step %d: loss = %.2f (%.3f sec)' % (step, loss_value, duration))
# Update the events file.
summary_str = sess.run(summary, feed_dict=feed_dict)
summary_writer.add_summary(summary_str, step)
summary_writer.flush() # Save a checkpoint and evaluate the model periodically.
if (step + 1) % 1000 == 0 or (step + 1) == FLAGS.max_steps:
checkpoint_file = os.path.join(FLAGS.log_dir, 'model.ckpt')
saver.save(sess, checkpoint_file, global_step=step)
# Evaluate against the training set.
print('Training Data Eval:')
do_eval(sess,
eval_correct,
images_placeholder,
labels_placeholder,
data_sets.train)
# Evaluate against the validation set.
print('Validation Data Eval:')
do_eval(sess,
eval_correct,
images_placeholder,
labels_placeholder,
data_sets.validation)
# Evaluate against the test set.
print('Test Data Eval:')
do_eval(sess,
eval_correct,
images_placeholder,
labels_placeholder,
data_sets.test) def main(_):
if tf.gfile.Exists(FLAGS.log_dir):
tf.gfile.DeleteRecursively(FLAGS.log_dir)
tf.gfile.MakeDirs(FLAGS.log_dir)
run_training() if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--learning_rate',
type=float,
default=0.01,
help='Initial learning rate.'
)
parser.add_argument(
'--max_steps',
type=int,
default=2000,
help='Number of steps to run trainer.'
)
parser.add_argument(
'--hidden1',
type=int,
default=128,
help='Number of units in hidden layer 1.'
)
parser.add_argument(
'--hidden2',
type=int,
default=32,
help='Number of units in hidden layer 2.'
)
parser.add_argument(
'--batch_size',
type=int,
default=100,
help='Batch size. Must divide evenly into the dataset sizes.'
)
parser.add_argument(
'--input_data_dir',
type=str,
default='/tmp/tensorflow/mnist/input_data',
help='Directory to put the input data.'
)
parser.add_argument(
'--log_dir',
type=str,
default='/tmp/tensorflow/mnist/logs/fully_connected_feed',
help='Directory to put the log data.'
)
parser.add_argument(
'--fake_data',
default=False,
help='If true, uses fake data for unit testing.',
action='store_true'
) FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)

full_connected_feed

full_connected_feed.py中main函数为入口点,调用run_training函数,函数体内调用了其他的函数。

输出:

 

小结:

1.多查TensorFlow官方帮助文档(不熟悉函数意思);

2.上述例子参照官网例程编写;

3.尽量使用GPU版TensorFlow,卷积网络20000次训练时,需要时间很长,而且本机的CPU占用率几近100%(intel i7-4720k);

4.安装python3.5时,注意添加路径到系统环境变量path中;

参考文献:1.https://www.tensorflow.org/get_started/mnist/pros

2.https://www.tensorflow.org/get_started/mnist/mechanics

基于TensorFlow解决手写数字识别的Softmax方法、多层卷积网络方法和前馈神经网络方法的更多相关文章

  1. OpenCV+TensorFlow图片手写数字识别(附源码)

    初次接触TensorFlow,而手写数字训练识别是其最基本的入门教程,网上关于训练的教程很多,但是模型的测试大多都是官方提供的一些素材,能不能自己随便写一串数字让机器识别出来呢?纸上得来终觉浅,带着这 ...

  2. TensorFlow 之 手写数字识别MNIST

    官方文档: MNIST For ML Beginners - https://www.tensorflow.org/get_started/mnist/beginners Deep MNIST for ...

  3. 【转】机器学习教程 十四-利用tensorflow做手写数字识别

    模式识别领域应用机器学习的场景非常多,手写识别就是其中一种,最简单的数字识别是一个多类分类问题,我们借这个多类分类问题来介绍一下google最新开源的tensorflow框架,后面深度学习的内容都会基 ...

  4. 100天搞定机器学习|day39 Tensorflow Keras手写数字识别

    提示:建议先看day36-38的内容 TensorFlow™ 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库.节点(Nodes)在图中表示数学操作,图中的线(edge ...

  5. python-积卷神经网络全面理解-tensorflow实现手写数字识别

    首先,关于神经网络,其实是一个结合很多知识点的一个算法,关于cnn(积卷神经网络)大家需要了解: 下面给出我之前总结的这两个知识点(基于吴恩达的机器学习) 代价函数: 代价函数 代价函数(Cost F ...

  6. 07 训练Tensorflow识别手写数字

    打开Python Shell,输入以下代码: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input ...

  7. 一文全解:利用谷歌深度学习框架Tensorflow识别手写数字图片(初学者篇)

    笔记整理者:王小草 笔记整理时间2017年2月24日 原文地址 http://blog.csdn.net/sinat_33761963/article/details/56837466?fps=1&a ...

  8. 手写数字识别的k-近邻算法实现

    (本文为原创,请勿在未经允许的情况下转载) 前言 手写字符识别是机器学习的入门问题,k-近邻算法(kNN算法)是机器学习的入门算法.本文将介绍k-近邻算法的原理.手写字符识别问题分析.手写字符识别的k ...

  9. Tensorflow实战 手写数字识别(Tensorboard可视化)

    一.前言 为了更好的理解Neural Network,本文使用Tensorflow实现一个最简单的神经网络,然后使用MNIST数据集进行测试.同时使用Tensorboard对训练过程进行可视化,算是打 ...

随机推荐

  1. HTML 5 audio标签

    audio标签的介绍 定义: <audio> 标签定义声音,比如音乐或其他音频流. <audio></audio>是HTML5中的新标签 能够在浏览器中播放音频, ...

  2. phpstudy lamp

    phpStudy for Linux (lnmp+lamp一键安装包 现在不考虑安装这个  (完整版:http://lamp.phpstudy.net/phpstudy-all.bin) 安装: wg ...

  3. linux 通过 openconnect 来连接学校内网

    参考 http://xingda1989.iteye.com/blog/1969908 https://blog.csdn.net/edin_blackpoint/article/details/70 ...

  4. Speed Up Your WordPress Site

    http://www.sitepoint.com/speed-wordpress/ http://www.sparringmind.com/speed-up-wordpress/ http://www ...

  5. 20154327 Exp2 后门原理与实践

    实践内容 使用netcat和socat.msf-meterpreter等工具获得主机权限,并进行一些恶意行为,如监控摄像头.记录键盘输入.截屏等. 详情见实验指导书 实践过程 netcat netca ...

  6. 优步北京B组奖励政策

    用户组:优步北京B组(2015年7月20日前激活的部分司机) 更新日期:2015年8月4日 滴滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最 ...

  7. 天津Uber优步司机奖励政策(1月11日~1月17日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  8. SpringBoot学习:获取yml和properties配置文件的内容

    项目下载地址:http://download.csdn.net/detail/aqsunkai/9805821 (一)yml配置文件: pom.xml加入依赖: <!-- 支持 @Configu ...

  9. 根据wsdl生成服务端代码

    场景描述 最近在和一家公司做业务接口对接,由他们那边回调我们这边,对方直接扔过来一个webservice的wsdl文件,让我们按照他们的规范来做webservice服务, 大多数的对接应该是我们创建完 ...

  10. 「日常训练&知识学习」树的直径(POJ-1849,Two)

    题意 一个城市由节点和连接节点的街道组成,街道是双向的. 此刻大雪覆盖了这个城市,市长确定了一些街道要将它们清扫干净,这些街道保证所有的节点可以通过它们连通而且街道数目尽可能小. 现有两台相同的扫雪机 ...